Validasi metode analisis nitrit dan nitrat dalam daging segar dan produk daging olahan secara spektrofotometri UV-Vis dengan pereaksi sulfanilamida dan N-naftiletilendiamina (NEDA) telah dilakukan. Tujuan dari penelitian ini adalah untuk mendapatkan metode analisis nitrit dan nitrat pada kondisi optimum yang memenuhi parameter. Nitrat direduksi menjadi nitrit menggunakan reduktor serbuk Zn. Optimasi metode analisis dilakukan sebelum validasi. Tahap selanjutnya metode divalidasi dengan pendekatan spiking buta nol berdasarkan parameter validasi meliputi linieritas, sensitivitas, batas deteksi, batas kuantifikasi, ketelitian dan ketepatan. Metode diaplikasikan untuk penentuan nitrit dan nitrat dalam daging segar dan produk daging olahan (sosis, daging asap dan kornet). Absorbansi senyawa azo mencapai optimum pada panjang gelombang 541 nm. Sementara itu, hasil validasi menunjukkan linieritas standar nitrit pada rentang 0,1 – 0,8 mg/L (R2= 0,9995) dengan absorptivitas molar sebesar 5,37 104 L mol-1 cm-1. Batas deteksi dan kuantifikasi masing-masing sebesar 0,021 dan 0,063 mg/L dengan %RSD analisis nitrit dan nitrat masing-masing sebesar 0,56 dan 1,73%. Persentase perolehan kembali analisis nitrit dan nitrat masing-masing antara 85 – 99% dan 82 – 100%. Konsentrasi nitrit dan nitrat yang ditentukan dalam daging masing-masing antara 0,60 – 14,79 mg/kg dan 0,68 – 8,39 mg/kg. Hasil tersebut menginformasikan bahwa nitrit dan nitrat yang ada dalam sampel berasal dari proses eksogen dan endogen.
The development of computer technology today is very helpful for humans in completing their work in various fields. One application of computer technology i.e., in the field of computer vision which has a very important role for object recognition. In this study, we designed a computer vision-based automatic vehicle counting system. The system that we created uses the MobileNetV2 Single Shot Multibox Detector (SSD) which is placed on the Raspberry Pi 4 to carry out the process of classifying cars and motorcycles and the raspberry pi 4 also functions as a system controller. This automatic vehicle counter system has been integrated between Raspberry Pi 4 and a mobile application on a smartphone where the smartphone functions to display information such as day, date, month, year and together with the number of cars and motorcycles. We tested this automatic vehicle counting system on steam services (car and motorcycle washing) for 3 days where 10 vehicles were collected every day. The test results show that the system is capable of detecting cars and motorcyles with an average accuracy rate of 46.6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.