Reactive oxygen species (ROS) production and lipid peroxidation during cryopreservation harm sperm membrane and as a result reduce the recovery of motile sperm. The antioxidant effects of melatonin on different cells have been widely reported. This study was aimed to evaluate changes in post-thaw motility, viability, and intracellular ROS and malondialdehyde (MDA) in response to the addition of melatonin to human sperm freezing extender. Semen of 43 fertile men was collected and each sample was divided into eight equal aliquots. An aliquot was analyzed freshly for viability, motility, and intracellular ROS and MDA. Melatonin was added to the recommended human freezing extender to yield six different final concentrations: 0.001, 0.005, 0.01, 0.05, 0.1, and 1 mM. A control group without melatonin was also included. Two weeks after cryopreservation, samples were thawed and pre-freeze analyses repeated. Obtained results showed that cryopreservation significantly ( P <0.05) reduces viability and motility, but increases intracellular ROS and MDA of human sperm. The semen extender supplemented with various doses of melatonin (except for 0.001 mM) significantly ( P <0.05) increased motility and viability, but decreased intracellular ROS and MDA levels of cryopreserved sperm after the thawing process, as compared with the control group. We also found that the most effective concentration of melatonin in protecting human spermatozoa from cryopreservation injuries was 0.01 mM. These findings suggest that melatonin exerts its cryoprotective effects on spermatozoa possibly by counteracting intracellular ROS, and thereby reduces MDA generation. This finally leads to increase of post-thaw viability and motility of cryopreserved spermatozoa.
OBJECTIVE: This study investigated the quercetin (Que) effects on growth of MCF-7 human cancer breast cell line and its cellular death mechanism. BACKGROUND: Quercetin has been found to be very effi cacious against many different types of cancer cells. However, the study is not suffi ciently powered to demonastrate anticancer mechanisms. METHODS: MCF-7cells were treated by 50 μM/ ml of Que for 48 hours. MCF-7 cells were also pretreated with 10 Μm ZVAD (apoptosis inhibitor) or 3 mM Nec-1 (necroptosis inhibitor) for evaluation of cell death induced by apoptosis or necroptosis. RESULTS: MTT and clonogenicity assays revealed that the Que induced a signifi cant increase in cell viability and proliferation in presence of Nec-1 in comparison to the presence of ZVAD (p < 0.05). Que also increased apoptosis as revealed by DAPI staining and morphology evaluations. Following Que treatment Bcl-2 expression was signifi cantly decreased while Bax expression was signifi cantly increased. Que in presence of Nec-1 decreased expression of Bax gene, reduced apoptotic index, increased cell viability and proliferation of MCF-7 cells in comparison to absence of Nec-1. MCF-7 cells showed a signifi cantly increased expression of RIPK1 and RIPK3 in response to Que plus ZVAD in comparison to absence of ZVAD. CONCLUSION: Our results revealed that the high Que toxicity for breast cancer cells depends on multiple cell death pathways, which involve mainly necroptosis (Fig. 6, Ref. 21). Text in PDF www.elis.sk.
: Background and objectives: Previous studies have shown anti-tumor activity of quercetin (QT). However, the low bioavailability of QT has restricted its use. This study aimed to assess the toxic effect of QT encapsulated in solid lipid nanoparticles (QT-SLNs) on the growth of MCF-7 human breast cancer cells. Materials and Methods: MCF-7 and MCF-10A (non-tumorigenic cell line) cell lines treated with 25 µmol/mL of QT or QT-SLNs for 48 h. Cell viability, colony formation, oxidative stress, and apoptosis were evaluated to determine the toxic effects of the QT-SLNs. Results: The QT-SLNs with appropriate characteristics (particle size of 85.5 nm, a zeta potential of −22.5 and encapsulation efficiency of 97.6%) were prepared. The QT-SLNs showed sustained QT release until 48 h. Cytotoxicity assessments indicated that QT-SLNs inhibited MCF-7 cells growth with a low IC50 (50% inhibitory concentration) value, compared to the free QT. QT-SLNs induced a significant decrease in the viability and proliferation of MCF-7 cells, compared to the free QT. QT-SLN significantly increased reactive oxygen species (ROS) level and MDA contents and significantly decreased antioxidant enzyme activity in the MCF-7 cells. Following QT-SLNs treatment, the expression of the Bcl-2 protein significantly decreased, whereas Bx expression showed a significant increase in comparison with free QT-treated cells. Furthermore, The QT-SLNs significantly increased apoptotic and necrotic indexes in MCF-7 cells. Viability, proliferation, oxidative stress and apoptosis of MCF-10A cells were not affected by QT or QT-SLNs. Conclusion: According to the results of this study, SLN significantly enhanced the toxic effect of QT against human breast cancer cells.
Recently, mesenchymal stromal cells (MSCs) and their derivative exosome have become a promising approach in the context of liver diseases therapy, in particular, acute liver failure (ALF). In addition to their differentiation into hepatocytes in vivo, which is partially involved in liver regeneration, MSCs support liver regeneration as a result of their appreciated competencies, such as antiapoptotic, immunomodulatory, antifibrotic, and also antioxidant attributes. Further, MSCs-secreted molecules inspire hepatocyte proliferation in vivo, facilitating damaged tissue recovery in ALF. Given these properties, various MSCs-based approaches have evolved and resulted in encouraging outcomes in ALF animal models and also displayed safety and also modest efficacy in human studies, providing a new avenue for ALF therapy. Irrespective of MSCs-derived exosome, MSCs-based strategies in ALF include administration of native MSCs, genetically modified MSCs, pretreated MSCs, MSCs delivery using biomaterials, and also MSCs in combination with and other therapeutic molecules or modalities. Herein, we will deliver an overview regarding the therapeutic effects of the MSCs and their exosomes in ALF. As well, we will discuss recent progress in preclinical and clinical studies and current challenges in MSCs-based therapies in ALF, with a special focus on in vivo reports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.