Malware is 'malicious software' programs that carry out many of the cyberattacks on the Internet, including cybercrime, fraud, scams and nation-state cyberwar. These malicious software programs come in a wide range of different classifications such as viruses, Trojans, worms, spyware, botnet malware, ransomware, Rootkit, etc. Ransomware is class of malware that holds the victim's data hostage by encrypting the data on a user's computer to make it unavailable to the user and only decrypt it after the user pays a ransom in the form of a sum of money. To avoid detection, different variants of ransomware utilise one or more techniques in their attack flow including Machine Learning (ML) algorithms. There is, therefore, a need to understand the techniques used ransomware development and their deployment strategy in order to understand their attack flow better to develop appropriate countermeasures. In this paper, we propose DNAact-Ran, A Digital DNA Sequencing Engine for Ransomware Detection Using Machine Learning. DNAact-Ran utilises Digital DNA sequencing design constraints and k-mer frequency vector. To measure the efficacy of the proposed approach, we evaluated DNAact-Run on 582 ransomware and 942 goodware instances to measure the performance of precision, recall, f-measure and accuracy. Compared to other methods, the evaluation results show that DNAact-Run can predict and detect ransomware accurately and effectively.
Detection and prediction of the novel Coronavirus present new challenges for the medical research community due to its widespread across the globe. Methods driven by Artificial Intelligence can help predict specific parameters, hazards, and outcomes of such a pandemic. Recently, deep learning-based approaches have proven a novel opportunity to determine various difficulties in prediction. In this work, two learning algorithms, namely deep learning and reinforcement learning, were developed to forecast COVID-19. This article constructs a model using Recurrent Neural Networks (RNN), particularly the Modified Long Short-Term Memory (MLSTM) model, to forecast the count of newly affected individuals, losses, and cures in the following few days. This study also suggests deep learning reinforcement to optimize COVID-19's predictive outcome based on symptoms. Real-world data was utilized to analyze the success of the suggested system. The findings show that the established approach promises prognosticating outcomes concerning the current COVID-19 pandemic and outperformed the Long Short-Term Memory (LSTM) model and the Machine Learning model, Logistic Regresion (LR) in terms of error rate.
The functionality of the Internet is continually changing from the Internet of Computers (IoC) to the “Internet of Things (IoT)”. Most connected systems, called Cyber-Physical Systems (CPS), are formed from the integration of numerous features such as humans and the physical environment, smart objects, and embedded devices and infrastructure. There are a few critical problems, such as security risks and ethical issues that could affect the IoT and CPS. When every piece of data and device is connected and obtainable on the network, hackers can obtain it and utilise it for different scams. In medical healthcare IoT-CPS, everyday medical and physical data of a patient may be gathered through wearable sensors. This paper proposes an AI-enabled IoT-CPS which doctors can utilise to discover diseases in patients based on AI. AI was created to find a few disorders such as Diabetes, Heart disease and Gait disturbances. Each disease has various symptoms among patients or elderly. Dataset is retrieved from the Kaggle repository to execute AI-enabled IoT-CPS technology. For the classification, AI-enabled IoT-CPS Algorithm is used to discover diseases. The experimental results demonstrate that compared with existing algorithms, the proposed AI-enabled IoT-CPS algorithm detects patient diseases and fall events in elderly more efficiently in terms of Accuracy, Precision, Recall and F-measure.
Malicious Uniform Resource Locator (URL) is a frequent and severe menace to cybersecurity. Malicious URLs are used to extract unsolicited information and trick inexperienced end users as a sufferer of scams and create losses of billions of money each year. It is crucial to identify and appropriately respond to such URLs. Usually, this discovery is made by the practice and use of blacklists in the cyber world. However, blacklists cannot be exhaustive, and cannot recognize zero-day malicious URLs. So to increase the observation of malicious URL indicators, machine learning procedures should be incorporated. In this study, we have developed a complete prototype of Malicious URL Detection using machine learning methods. In particular, we have attempted an exact formulation of Malicious URL exposure from a machine learning perspective and proposed an approach using the AdaBoost algorithm -the proposed approach has brought forward more accuracy than other existing algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.