During the outbreak of the COVID-19 pandemic, social networks became the preeminent medium for communication, social discussion, and entertainment. Social network users are regularly expressing their opinions about the impacts of the coronavirus pandemic. Therefore, social networks serve as a reliable source for studying the topics, emotions, and attitudes of users that have been discussed during the pandemic. In this paper, we investigate the reactions and attitudes of people towards topics raised on social media platforms. We collected data of two large-scale COVID-19 datasets from Twitter and Instagram for six and three months, respectively. This paper analyzes the reaction of social network users in terms of different aspects including sentiment analysis, topic detection, emotions, and the geo-temporal characteristics of our dataset. We show that the dominant sentiment reactions on social media are neutral, while the most discussed topics by social network users are about health issues. This paper examines the countries that attracted a higher number of posts and reactions from people, as well as the distribution of health-related topics discussed in the most mentioned countries. We shed light on the temporal shift of topics over countries. Our results show that posts from the top-mentioned countries influence and attract more reactions worldwide than posts from other parts of the world.
Developing a custom model specifically tailored to address domain-specific problems is crucial for achieving optimal performance. The interpretation of machine learning models plays a pivotal role in this development, aiding domain experts in gaining insights into the internal mechanisms of these models. However, adversarial attacks pose a significant threat to public trust by making interpretations of deep learning models confusing and difficult to understand. In this paper, we present a novel Single-class target-specific ADVersarial attack called SingleADV. The goal of SingleADV is to generate a universal perturbation that deceives the target model into confusing a specific category of objects with a target category while ensuring highly relevant and accurate interpretations. The universal perturbation is stochastically and iteratively optimized by minimizing the adversarial loss that is designed to consider both the classifier and interpreter costs in targeted and non-targeted categories. In this optimization framework, ruled by the first-and second-moment estimations, the desired loss surface promotes high confidence and interpretation score of adversarial samples. By avoiding unintended misclassification of samples from other categories, SingleADV enables more effective targeted attacks on interpretable deep learning systems in both white-box and black-box scenarios. To evaluate the effectiveness of SingleADV, we conduct experiments using four different model architectures (ResNet-50, VGG-16, DenseNet-169, and Inception-V3) coupled with three interpretation models (CAM, Grad, and MASK). Through extensive empirical evaluation, we demonstrate that SingleADV effectively deceives the target deep learning models and their associated interpreters under various conditions and settings. Our experimental results show that the performance of SingleADV is effective, with an average fooling ratio of 0.74 and an adversarial confidence level of 0.78 in generating deceptive adversarial samples. Furthermore, we discuss several countermeasures against SingleADV, including a transfer-based learning approach and existing preprocessing defenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.