Artificial Intelligence and Machine Learning algorithms were used to identify the coronavirus (COVID-19) from X-ray photos of the chest. The authors propose a model for early coronavirus detection based on image filtering strategies and a hybrid feature selection model in this analysis. Traditional statistical and machine learning methods are used to derive these attributes from CT images. The Confusion Matrix for infected COVID-19 patients and regular patients was obtained using Support Vector Machine and K-Nearest Neighbor to classify the features chosen. The output of the two approaches can be compared. The various techniques’ performance shows that the Support Vector Machine achieves the highest precision of 97% compared to the K-Nearest Neighbor with a precision of 86%.
Higher education institutions are required to be providers of quality education. One of the instruments used by the government to measure the quality of education providers is the number of graduates. The higher the graduation rate, the better the quality of education and this good quality will positively affect the accreditation value given by BAN-PT. Therefore, in this study, researchers provide input for research conducted at Bhayangkara University, Greater Jakarta to predict student graduation rates using the Neural Network algorithm. Neural Network is a method in machine learning developed from Multi Layer Perceptron (MLP) which is designed to process two-dimensional data. Neural Network is included in the type of Deep Neural Network because of the depth of the network level and is widely implemented in image data. Neural Network has two methods; namely classification using feedforward and learning stages using backpropagation. The way Neural Network works is similar to MLP but in Neural Network each neuron is represented in two dimensions, unlike MLP where each neuron is only one dimension. The prediction accuracy obtained is 98.27%. unlike MLP where each neuron is only one-dimensional. The prediction accuracy obtained is 98.27%. unlike MLP where each neuron is only one-dimensional. The prediction accuracy obtained is 98.27%.
The development of the times resulted in the development of technology to date. With the existence of technology, many people have used technology to help their daily activities. In this study, the author will discuss the technology that is often used by students to help them with their assignments, namely laptops. Laptop is a technology that has been widely used by students, teachers and the public. Having a laptop can make things easier. Until now, each laptop brand continues to develop their laptop production laptops with good specifications. Until now, almost all laptop brands have made gaming laptops that are actually intended for people-people who play games. But with good specifications, gaming laptops can also be used for daily activities. With an attractive design and good specifications, of course you can attract student and public interest in gaming laptops. Therefore the authors made a study of student interest in gaming laptops. With good design and specifications on gaming laptops, the author aims to classify the number of students who are interested and not interested in gaming laptops. The classification will be carried out using the Naïve Bayes method with the number of sample data used as many as 100 student data in data mining. The classification results obtained were 55 students (55% representation) interested in gaming laptops and 45 students (45% representation) had no interest in gaming laptops. The results show that not all students are interested in gaming laptops, even though they have laptops design and great specs.
Universitas pembangunan pancabudi in submitting thesis titles and approving thesis titles still in a simple way, remembering that now the technology is already sophisticated, so the writer makes an information system for submitting titles online, namely by way of students submitting thesis titles and head of study program approving thesis titles online, after that the head of study program enters a supervisor who will guide students but, students can print a certificate form as proof that the title of the thesis has been approved, with this system is expected to facilitate students in the submission of thesis title. With this new system, students and related sections will be easier to submit and process data that includes all thesis title submission data so that the title submission process can run effectively. In addition, students will be easier to get the information needed to facilitate students in the process of submitting thesis titles and get the signature of the head of the study program system as well as to get the signature of the supervisor so that students do not need to come to the campus to see the results of the submission of thesis titles this application is designed by using PHP and MYSQL as the database with a web-based programming language.
Estimation of photosynthetic pigment levels from leaves can be done using conventional methods using laboratory equipment such as spectrophotometers and using digital image processing from leaf images with a computational model. In digital image processing methods, various models are used, such as neural network, CNN, and linear regression. Measurement of photosynthetic pigment levels using image processing methods uses color value data from image data as input to the model used. In this study, we will analyze the effect of various types of color space and inpaint preprocessing settings on the accuracy of the CNN model in measuring leaf photosynthetic pigment levels. The color space types being tested are 4 single color spaces RGB, HSV, LAB, and YCbCr, as well as 6 color combination spaces RGB+HSV, RGB+LAB, RGB+YCbCr, HSV+LAB, HSV+YCbCr, and LAB+YCbCr. The choice of the type of color space takes into account the phenomenon of color constancy and the characteristics of the color space on the lighting elements. In addition, image data is divided into two types, namely through inpaint preprocessing and not, so that in total there are 20 types of input data. After the CNN model training process with various types of color spaces and different preprocessing settings as input data, observations were made on the accuracy values, namely the training MAE and the validation MAE for each model. From 20 types of input data, 3 types of input data are obtained which are recommended as input data that provide the best model accuracy value based on MAE validation with values of 0.08761, 0.09252, and 0.09288. The three recommended input data from the sequence of accuracy values are RGB+LAB without inpaint, RGB with inpaint, and LAB+YCbCr without inpaint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.