Enhanced licensed-assisted access (eLAA) is an operational mode that allows the use of unlicensed band to support long-term evolution (LTE) service via carrier aggregation technology. The extension of additional bandwidth is beneficial to meet the demands of the growing mobile traffic. In the uplink eLAA, which is prone to unexpected interference from WiFi access points, resource scheduling by the base station, and then performing a listen before talk (LBT) mechanism by the users can seriously affect the resource utilization. In this paper, we present a decentralized deep reinforcement learning (DRL)-based approach in which each user independently learns dynamic band selection strategy that maximizes its own rate. Through extensive simulations, we show that the proposed DRL-based band selection scheme improves resource utilization while supporting certain minimum quality of service (QoS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.