A web application is a software system that provides an interface to its users through a web browser on any operating system (OS). Despite their growing popularity, web application security threats have become more diverse, resulting in more severe damage. Malware attacks, particularly SQLI attacks, are common in poorly designed web applications. This vulnerability has been known for more than two decades and is still a source of concern. Accordingly, different techniques have been proposed to counter SQLI attacks. However, the majority of them either fail to cover the entire scope of the problem. The structured query language injection (SQLI) attack is among the most harmful online application attacks and often happens when the attacker(s) alter (modify), remove (delete), read, and copy data from database servers. All facets of security, including confidentiality, data integrity, and data availability, can be impacted by a successful SQLI attack. This paper investigates common SQLI attack forms, mechanisms, and a method of identifying, detecting, and preventing them based on the existence of the SQL query. Here, we have developed a comprehensive framework for detecting and preventing the effectiveness of techniques that address specific issues following the essence of the SQLI attacks by using traditional Navies Bayes (NB), Decision Trees (DT), Support Vectors Machine (SVM), Random Forests (RF), Logistic Regression (LR), and Neural Networks Based on Multilayer Perceptron (MLP), and hybrid approach are used for our study. The machine learning (ML) algorithms were implemented using the Keras library, while the classical methods were implemented using the Tensor Flow-Learn package. For this proposed research work, we gathered 54,306 pieces of data from weblogs, cookies, session usage, and from HTTP (S) request files to train and test our model. The performance evaluation results for training set in metrics such as the hybrid approach (ANN and SVM) perform better accuracies in precision (99.05% and 99.54%), recall (99.65% and 99.61%), f1-score (99.35% and 99.57%), and training set (99.20% and 99.60%) respectively than other ML approaches. However, their training time is too high (i.e., 19.62 and 26.16 s respectively) for NB and RF. Accordingly, the NB technique performs poorly in accuracy, precision, recall, f1-score, training set evaluation metrics, and best in training time. Additionally, the performance evaluation results for test set in metrics such as hybrid approach (ANN and SVM) perform better accuracies in precision (98.87% and 99.20%), recall (99.13% and 99.47%), f1-score (99.00% and 99.33%) and test set (98.70% and 99.40%) respectively than other ML approaches. However, their test time is too high (i.e., 11.76 and 15.33 ms respectively). Accordingly, the NB technique performs poorly in accuracy, precision, recall, f1-score, test set evaluation metrics, and best in training time. Here, among the implemented ML techniques, SVM and ANN are weak learners. The achieved performance evaluation results indicated that the proposed SQLI attack detection and prevention mechanism has been improved over the previously implemented techniques in the theme. Finally, in this paper, we aimed to keep researchers up-to-date, with contributions, and recommendations to the understanding of the intersection between SQLI attacks and prevention in the artificial intelligence (AI) field.
Web applications play an important role in everyday life. Various Web applications are used to carry out billions of online transactions. These applications are vulnerable to attacks due to their extensive use. The most prevalent attack is SQL injection, which accepts user input and runs queries in the backend based on the user's input, returning desired results. To counter the SQL injection attack, various approaches have been offered; however, the majority of them either fail to cover the full breadth of the problem. This research paper looks into frequent SQL injection attack forms, their mechanisms, and a way of identifying them based on the SQL query's existence. We propose a comprehensive framework for determining the effectiveness of techniques that address certain issues following the essence of the attack, using hybrid (Statistic and dynamic) and machine learning. An extensive examination of the model based on a test set indicates that the Hybrid and ANN approaches outperform Naive Bayes, SVM, and Decision trees in terms of accuracy in classifying injected Queries. However, when it came to web loading time during testing, Nave Bayes outperformed. The Hybrid Method improved the accuracy of SQL injection attack prevention, according to the test findings. Although we used a limited dataset for training and testing in our study, it is advised that the dataset be expanded and the model be tested in a real-world setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.