Behavioral and electrophysiological evidence suggests that glutamatergic neurotransmission plays an important role in some of the long-term effects of cocaine and other drugs of abuse on brain function. We therefore examined the effect of repeated cocaine treatment on glutamate receptor subunit expression in central dopamine (DA) pathways implicated in many of cocaine's behavioral actions. By immunoblotting procedures using subunit-specific antibodies, we found that repeated, but not acute, cocaine treatment increased the levels of immunoreactivity of GluR1 (an AMPA receptor subunit) and NMDAR1 (an NMDA receptor subunit) in the ventral tegmental area (VTA), a nucleus containing mesolimbic DA neurons. In contrast, chronic cocaine treatment did not alter levels of GluR2 (an AMPA receptor subunit), NMDA2A/B (NMDA receptor subunits), or GluR6/7 (kainate receptor subunits) in this brain region. Moreover, GluR1 and NMDAR1 levels were not regulated in other regions of the mesolimbic or nigrostriatal DA pathways, including the substantia nigra. Because several drugs of abuse and stress can elicit common and cross-sensitizing effects on mesolimbic DA function, we next examined whether repeated morphine and stress treatments would regulate these proteins similarly in the VTA. Although morphine delivered by subcutaneous pellet implantation had no significant effect on subunit levels, morphine delivered intermittently by subcutaneous injections of escalating doses elevated GluR1 levels in the VTA. Repeated restraint stress also paradigm (2 stressors/d under variable conditions) increased both GluR1 and NMDAR1 levels in this brain region. Unlike cocaine, morphine, and stress, repeated treatment with other psychotropic drugs (haloperidol, raclopride, sertraline, and desipramine) that lack reinforcing or sensitizing properties did not regulate GluR1 or NMDAR1 subunit levels in the VTA. Increased glutamate receptor subunit expression in the VTA may represent an important molecular mechanism by which drugs of abuse and stress exert common, long-term effects on mesolimbic DA function.
The synthesis and CRF receptor binding affinities of several new series of N-aryltriazolo- and -imidazopyrimidines and -pyridines are described. These cyclized systems were prepared from appropriately substituted diaminopyrimidines or -pyridines by nitrous acid, orthoester, or acyl halide treatment. Variations of amino (ether) pendants and aromatic substituents have defined the structure-activity relationships of these series and resulted in the identification of a variety of high-affinity agents (Ki's < 10 nM). On the basis of this property and lipophilicity differences, six of these compounds (4d,i,n,x, 8k, 9a) were initially chosen for rat pharmacokinetic (PK) studies. Good oral bioavailability, high plasma levels, and duration of four of these compounds (4d,i,n,x) prompted further PK studies in the dog following both iv and oral routes of administration. Results from this work indicated 4i,x had properties we believe necessary for a potential therapeutic agent, and 4i1 has been selected for further pharmacological studies that will be reported in due course.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.