Soil salinity, drought, and increasing temperatures are serious environmental issues that drastically reduce crop productivity worldwide. Quinoa (Chenopodium quinoa Willd) is an important crop for food security under the changing climate. This study examined the physio-biochemical responses, plant growth, and grain yield of four quinoa genotypes (A7, Titicaca, Vikinga, and Puno) grown in pots containing normal (non-saline) or salt-affected soil exposed to drought and elevated-temperature treatments. Combinations of drought, salinity, and high-temperature stress decreased plant growth and yield more than the individual stresses. The combined drought, salinity, and heat stress treatment decreased the shoot biomass of A7, Puno, Titicaca, and Vikinga by 27, 36, 41, and 50%, respectively, compared to that of control plants. Similar trends were observed for grain yield, chlorophyll contents, and stomatal conductance. The combined application of these three stresses increased Na concentrations but decreased K concentrations in roots and shoots relative to control. Moreover, in the combined salinity, drought, and high-temperature treatment, A7, Puno, Titicaca, and Vikinga had 7.3-, 6.9-, 8-, and 12.6-fold higher hydrogen peroxide contents than control plants. All four quinoa genotypes increased antioxidant enzyme activities (CAT, SOD, and POD) to overcome oxidative stress. Despite A7 producing the highest biomass under stress, it did not translate into increased grain production. We conclude that Puno and Titicaca are more tolerant than Vikinga for cultivation in salt-affected soils prone to drought and heat stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.