In this paper, we propose a family of optimal eighth order convergent iterative methods for multiple roots with known multiplicity with the introduction of two free parameters and three univariate weight functions. Also numerical experiments have applied to a number of academical test functions and chemical problems for different special schemes from this family that satisfies the conditions given in convergence result.
We construct a family of derivative-free optimal iterative methods without memory to approximate a simple zero of a nonlinear function. Error analysis demonstrates that the without-memory class has eighth-order convergence and is extendable to with-memory class. The extension of new family to the with-memory one is also presented which attains the convergence order 15.5156 and a very high efficiency index 15.51561/4≈1.9847. Some particular schemes of the with-memory family are also described. Numerical examples and some dynamical aspects of the new schemes are given to support theoretical results.
Newton-Raphson method has always remained as the widely used method for finding simple as well as multiple roots of nonlinear equations. In the past years, many new methods have been introduced for finding multiple zeroes that involve the use of weight function in the second step, thereby, increasing the order of convergence and giving a flexibility to generate a family of methods satisfying some underlying conditions. However, in almost all the schemes developed over the past, the usual way is to use Newton type method at the first step. In this paper, we present a new two-step optimal fourth-order family of methods for multiple roots (m > 1). The proposed iterative family has the flexibility of choice at both steps. The development of the scheme is based on using weight functions. The first step can not only recapture Newton's method for multiple roots as special case but is also capable of defining new choices of first step. We compare our methods with the existing methods of same order with a real life application as well as standard test problems. From the numerical results, we find that our methods can be considered as a better alternate for the exiting methods of same order. %Finally, dynamical study and stability analysis is also given to explain the dynamical behavior of the new methods around the multiple roots.
We construct an optimal eighth-order scheme which will work for multiple zeros with multiplicity [Formula: see text], for the first time. Earlier, the maximum convergence order of multi-point iterative schemes was six for multiple zeros in the available literature. So, the main contribution of this study is to present a new higher-order and as well as optimal scheme for multiple zeros for the first time. In addition, we present an extensive convergence analysis with the main theorem which confirms theoretically eighth-order convergence of the proposed scheme. Moreover, we consider several real life problems which contain simple as well as multiple zeros in order to compare with the existing robust iterative schemes. Finally, we conclude on the basis of obtained numerical results that our iterative methods perform far better than the existing methods in terms of residual error, computational order of convergence and difference between the two consecutive iterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.