This paper describes a study on the effects of heat treatment on the microstructure, hardness and wear of aluminum alloys 332 (AlSi9Cu3Mg). The solution treatment was performed at 500°C for 5 hours and then quenched in water at room temperature. Aging was performed at 170°C for 2 hours. The findings revealed that after a full heat treatment, the structure of the eutectic silicon formed toward fragmentation and spheroidization, and the silicon particles became coarse (look-like rounded). Hard intermetallic compound (Mg2Si) appeared on the microstructure after the aging treatment completed. Compared to the as-cast, the hardness of the alloys has improved to 44.84%, and the wear rate of the solution treatment had decreased to 26% while the aging treatment showed a deterioration of 79.42%. The study concludes that aging treatment improves the hardness of AA332 alloys and enhanced the wear resistance of the substance.
This paper describes a study on the effects of Mg 2 Si (p) addition on the microstructure, porosity, and mechanical properties namely hardness and tensile properties of AA332 composite. Each composite respectively contains 5, 10, 15, and 20 wt% reinforcement particles developed by a stir-casting. The molten composite was stirred at 600 rpm and melted at 900°C ± 5°C. The Mg 2 Si particles were wrapped in an aluminum foil to keep them from burning when melting. The findings revealed that the microstructure of Mg 2 Si (p) /AA332 consists of α-Al, binary eutectic (Al+Mg 2 Si), Mg 2 Si particles, and intermetallic compound. The intermetallic compound was identified as Fe-rich and Cu-rich, formed as polygonal or blocky, Chinese script, needle-like, and polyhendrons or "skeleton like". The porosity of Mg 2 Si (p) /AA332 composite increased from 8-10% and the density decreased from 9-12% from as-cast. Mechanical properties such as hardness increased for over 42% from as-cast and the highest UTS, elongation, and maximum Q.I were achieved in the sample of 10% Mg 2 Si. The study concludes that combined with AA332, the amount of 10 wt% of Mg 2 Si is a suitable reinforcement quantity with the combination of AA332.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.