Green fluorescent protein (GFP) from jellyfish Aequorea victoria, the powerful genetically encoded tag presently available in a variety of mutants featuring blue to yellow emission, has found a red-emitting counterpart. The recently cloned red fluorescent protein DsRed, isolated from Discosoma corals (), with its emission maximum at 583 nm, appears to be the long awaited tool for multi-color applications in fluorescence-based biological research. Studying the emission dynamics of DsRed by fluorescence correlation spectroscopy (FCS), it can be verified that this protein exhibits strong light-dependent flickering similar to what is observed in several yellow-shifted mutants of GFP. FCS data recorded at different intensities and excitation wavelengths suggest that DsRed appears under equilibrated conditions in at minimum three interconvertible states, apparently fluorescent with different excitation and emission properties. Light absorption induces transitions and/or cycling between these states on time scales of several tens to several hundreds of microseconds, dependent on excitation intensity. With increasing intensity, the emission maximum of the static fluorescence continuously shifts to the red, implying that at least one state emitting at longer wavelength is preferably populated at higher light levels. In close resemblance to GFP, this light-induced dynamic behavior implies that the chromophore is subject to conformational rearrangements upon population of the excited state.
Fluorescence correlation spectroscopy (FCS) analyzes spontaneous fluctuations in the fluorescence emission of small molecular ensembles, thus providing information about a multitude of parameters, such as concentrations, molecular mobility and dynamics of fluorescently labeled molecules. Performed within diffraction-limited confocal volume elements, FCS provides an attractive alternative to photobleaching recovery methods for determining intracellular mobility parameters of very low quantities of fluorophores. Due to its high sensitivity sufficient for single molecule detection, the method is subject to certain artifact hazards that must be carefully controlled, such as photobleaching and intramolecular dynamics, which introduce fluorescence flickering. Furthermore, if molecular mobility is to be probed, nonspecific interactions of the labeling dye with cellular structures can introduce systematic errors. In cytosolic measurements, lipophilic dyes, such as certain rhodamines that bind to intracellular membranes, should be avoided. To study free diffusion, genetically encoded fluorescent labels such as green fluorescent protein (GFP) or DsRed are preferable since they are less likely to nonspecifically interact with cellular substructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.