Studies were conducted to evaluate citric acid production by solid-state fermentation (SSF) using cassava bagasse as substrate employing a fungal culture of Aspergillus niger LPB 21 at laboratory and semipilot scale. Optimization of the process parameters temperature, pH, initial humidity, aeration, and nutritive composition was conducted in flasks and column fermentors. The results showed that thermal treatment of cassava bagasse enhanced fungal fermentation efficacy, resulting in 220 g of citric acid/kg of dry cassava bagasse with only treated cassava bagasse as substrate. The results obtained from the factorial experimental design in a column bioreactor showed that an aeration rate of 60 mL/min (3 mL/[g.min]) and 60% initial humidity were optimum, resulting in 265.7 g/kg of dry cassava bagasse citric acid production. This was almost 1.6 times higher than the quantities produced under unoptimized conditions (167.4 g of citric acid/kg of dry cassava bagasse). The defined parameters were transferred to semipilot scale, which showed high promise for large-scale citric acid production by SSF with cassava bagasse. Respirometry assays were carried out in order to follow indirectly the biomass evolution of the process. Citric acid production reached 220, 309, 263, and 269 g/kg of dry cassava bagasse in Erlenmeyer flasks, column fermentors, a tray bioreactor, and a horizontal drum bioreactor, respectively.
-Citric acid is commercailly important product used in several industrial processes. Solid-state fermentation (SSF) has become an alternative method for citric acid production using agro-industrial residues such as cassava bagasse (CB). Use of CB as substrate can avoid the environmental problems caused by its disposal in the environment. The aim of this work was to verify the effect of different percentages of gelatinized starch in CB on production of citric acid by SSF in horizontal drum and tray-type bioreactors. Gelatinization was used in order to make the starch structure more susceptible to consumption by the fungus. The best results (26.9 g/100g of dry CB) were obtained in horizontal drum bioreactor using 100% gelatinized CB, although the tray-type bioreactor offers advantages and shows promise for large-scale citric acid production in terms of processing costs.
Among the organic acids produced industrially, citric acid is the most important in quantitative terms. Solid‐state fermentation (SSF) has been an alternative method for citric acid production using agro‐industrial residues such as cassava bagasse (CB). The use of CB as a substrate can avoid environmental problems caused by its disposal into the environment. This study was developed to verify the influence of the treated bagasse amount, and consequently, the influence of the gelatinization degree of CB starch on citric acid production by SSF in Erlenmeyer flasks, horizontal drums, and trays. The best results were obtained in a horizontal drum bioreactor using 100 % of treated CB. However, trays showed advantages and good perspectives for large‐scale citric acid production due to economic reasons such as energy costs. A kinetic study was also carried out in order to compare citric acid production in glass columns (laboratory scale) and horizontal drum bioreactors (semi‐pilot scale). This study was accomplished in order to follow the influence of aeration on citric acid accumulation. In addition, the production of CO2 was evaluated as an indirect method of biomass estimation. Citric acid production was higher in glass columns (309.70 g/kg of dry CB) than in HD bioreactors (268.94 g/kg of dry CB). Finally, it was possible to show that citric acid production was favored by a limited biomass production, which occurred with low aeration rates. Biomass production is related to CO2 production and as a result, a respirometry analysis could be used for biomass estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.