Leptospirosis is a zoonotic disease that occurs worldwide and is caused by pathogenic bacteria of the genus Leptospira. Clinical manifestations of leptospirosis are similar to other febrile illnesses and this fact frequently retards the beginning of antibiotic therapy. Thus, early and accurate diagnosis is a prerequisite for proper treatment of leptospirosis. Antigen and DNA-based detection tests offer potential advantage over tests based on antibody detection for early diagnosis of leptospirosis since antibodies only reach detectable levels several days after the onset of the infection. This work describes a method for detection of pathogenic Leptospira that associates an immunoseparation step with a PCR assay and uses an internal amplification control (IAC) to ensure accuracy of the test. The immunoseparation was performed with protein A-magnetic beads in house coated with an MAb specific for LipL32, the major outer membrane protein of pathogenic Leptospira; PCR was performed using lipL32 specific primers. The IMS-PCR method enhanced detection of Leptospira in experimentally contaminated human sera and urine when compared to PCR performed alone. IMS-PCR was able to detect 10(2) Leptospira cells per mL of human sera and urine, corresponding to 25 genomic copies per PCR reaction.
The aim of this study was to investigate the effect of Eugenia uniflora fruit (red type) extract on metabolic status, as well as on neurochemical and behavioral parameters in an animal model of metabolic syndrome induced by a highly palatable diet (HPD). Rats were treated for 150days and divided into 4 experimental groups: standard chow (SC) and water orally, SC and E. uniflora extract (200mg/kg daily, p.o), HPD and water orally, HPD and extract. Our data showed that HPD caused glucose intolerance, increased visceral fat, weight gain, as well as serum glucose, triacylglycerol, total cholesterol and LDL cholesterol; however, E. uniflora prevented these alterations. The extract decreased lipid peroxidation and prevented the reduction of superoxide dismutase and catalase activities in the prefrontal cortex, hippocampus and striatum of animals submitted to HPD. We observed a HPD-induced reduction of thiol content in these cerebral structures. The extract prevented increased acetylcholinesterase activity in the prefrontal cortex caused by HPD and the increase in immobility time observed in the forced swim test. Regarding chemical composition, LC/MS analysis showed the presence of nine anthocyanins as the major compounds. In conclusion, E. uniflora extract showed benefits against metabolic alterations caused by HPD, as well as exhibited antioxidant and antidepressant-like effects.
Pathogenic serovars of Leptospira have a wide antigenic diversity attributed mainly to the lipopolysaccharide present in the outer membrane. In contrast, antigens conserved among pathogenic serovars are mainly represented by outer membrane proteins. Surface exposure of a major and highly conserved outer membrane lipoprotein (LipL32) was recently demonstrated on pathogenic Leptospira. LipL32 in its recombinant form (rLipL32) was used to immunize BALB/c mice to develop murine monoclonal antibodies (MAbs). Three MAbs against rLipL32 were produced, isotyped, and evaluated for further use in diagnostic tests of leptospirosis using different approaches. MAbs were conjugated to peroxidase and evaluated in a native protein enzyme-linked immunosorbent assay (ELISA) with intact and heat-treated leptospiral cells, conjugated to fluorescein isothiocyanate (FITC) for indirect immunofluorescence with intact and methanol fixed cells and were used for LipL32 immunoprecipitation from leptospiral cells. rLipL32 MAbs conjugated to peroxidase or used as primary antibody bound to intact and heat-treated cells in ELISA, proving that they could be used in enzyme immunoassays for detection of the native protein. In immunofluorescence assay, MAbs labeled bacterial cells either intact or methanol fixed. Two MAbs were able to immunoprecipitate the native protein from live and motile leptospiral cells and, adsorbed onto magnetic beads, captured intact bacteria from artificially contaminated human sera for detection by polymerase chain reaction (PCR) amplification. Results of this study suggest that the MAbs produced can be useful for the development of diagnostic tests based on detection of LipL32 leptospiral antigen in biological fluids.
The antioxidant properties of two series of thiazolidinones and thiazinanones were reported. The novel six-membered thiazinanones were synthesized from the efficient multicomponent reaction of 2-picolylamine (2-aminomethylpyridine), arenaldehydes, and the 3-mercaptopropionic acid in moderate to excellent yields. These novel compounds were fully identified and characterized by NMR and GC-MS techniques. In vitro antioxidant activities of all compounds were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) tests. The antioxidant assays of thiobarbituric acid reactive species and total thiol content levels in the cerebral cortex and liver of rats were also performed. Thiazinanone 5a showed the best radical scavenging activity in DPPH and ABTS tests, as well as reduced lipid peroxidation and increased total thiol group in biological systems. Altogether, the results may be considered a good starting point for the discovery of a new radical scavenger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.