In this paper, we consider the problem of the existence of a spacelike closed geodesic on compact Lorentzian manifolds. Tipler and Galloway proved that, under suitable topological properties of the manifold, there exists a closed timelike geodesic. In their proofs, they use the hypothesis that the time coordinate of one timelike geodesic has derivative always different from zero. This clearly fails for spacelike geodesies. Using variational methods and applying the relative category theory, we prove the existence of a closed spacelike geodesic on a compact manifold of splitting type. Observe that, thanks to the previous results, the existence of at least two geometrically distinct closed geodesies on follows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.