From the reaction between a dinuclear paddle-wheel carboxylate, namely [Cu2mu-(O2CCH2C4H3S)4] (1), and the flexible ligand 1,3-bis(4-pyridyl)propane (BPP) a neutral 2-D coordination polymer [[Cu2(O2CCH2C4H3S)4mu-(BPP)2]]n (2) was obtained. Compounds 1 and 2 were characterized by means of elemental analysis, thermal analysis (TG/DSC), vibrational spectroscopy, and electron paramagnetic resonance (EPR). The crystal structure of 2 reveals that each Cu(II) is coordinated by two nitrogen atoms from different BPP ligands and two 3-thiopheneacetate groups within a distorted square planar geometry in a trans-[N, N, O, O] arrangement. The BPP ligand adopts a TG conformation bridging two copper centers giving rise to a 1-D sinusoidal polymeric chain along the crystallographic c axis. Adjacent 1-D chains are extended into a 2-D coordination network through pairs of monatomic carboxylate bridges in direction of the b axis. This bridging mode affords centrosymmetric dimeric units Cu2O2, and therefore, the copper ions are involved in a CuN2O2O' chromophore displaying a (4 + 1) square pyramidal coordination in the resultant 2-D polymeric network. The polycrystalline X-band EPR spectrum of 2 at room temperature is characteristic of a triplet state with nonnegligible zero-field splitting in agreement with the crystal structure. Crystal data for 2: monoclinic, space group P2(1)/c, a = 9.4253(10) A, b = 10.9373(10) A, c = 23.6378(10) A, beta = 98.733(4) degrees, Z = 2.
a b s t r a c tNew binuclear lanthanide (III) complexes of general formula [Ln 2 (hcin) 6 (phen) 2 ] (where Ln = Eu 1; Gd 2; Tb 3; hcin = hydrocinnamate anion; phen = 1,10-phenanthroline) were synthesized and fully characterized by elemental analysis, vibrational spectroscopy (infrared and Raman), thermal analysis (TGA/ DTA), CP/MAS 13 C NMR and powder X-ray diffraction. The crystal description based on powder X-ray diffraction data reveals that all compounds are isostructural and that each lanthanide ion is nine coordinated by oxygen and nitrogen atoms to form distorted tricapped trigonal-prismatic coordination polyhedron. The photoluminescence behavior was studied based on the excitation and emission spectra and luminescence decay curves. The emission spectra of Eu(III) and Tb(III) complexes are composed of intense and typical red and green emissions, respectively. Phosphorescence data of Gd(III) complex showed that the triplet states (T 1 ) of ligands have higher energy than the main emitting states of Eu(III) and Tb(III) indicating the possibility of intramolecular energy transfer for these metal ions. To elucidate the energy transfer process in the Eu(III) complex, spectroscopic properties as X k intensity parameters (k = 2 and 4), radiative (A rad ) and nonradiative (A nrad ) decay rates and quantum efficiency (g) of [Eu 2 (hcin) 6 (phen) 2 ] were determined. Such spectroscopic properties were compared with [Eu 2 (hcin) 6 (bpy) 2 ] complex properties recently reported. The high emission quantum efficiency (g = 72%) for Eu(III) complex 1 showed that it is a potential candidate as emitter in photonic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.