The use of olive pomace could represent an innovative and low-cost strategy to formulate healthier and value-added foods, and bakery products are good candidates for enrichment. In this work, we explored the prebiotic potential of bread enriched with Polyphenol Rich Fiber (PRF), a defatted olive pomace byproduct previously studied in the European Project H2020 EcoProlive. To this aim, after in vitro digestion, the PRF-enriched bread, its standard control, and fructo-oligosaccharides (FOS) underwent distal colonic fermentation using the in vitro colon model MICODE (multi-unit colon gut model). Sampling was done prior, over and after 24 h of fermentation, then metabolomic analysis by Solid Phase Micro Extraction Gas Chromatography Mass Spectrometry (SPME GCMS), 16S-rDNA genomic sequencing of colonic microbiota by MiSeq, and absolute quantification of main bacterial species by qPCR were performed. The results indicated that PRF-enriched bread generated positive effects on the host gut model: (i) surge in eubiosis; (ii) increased abundance of beneficial bacterial groups, such as Bifidobacteriaceae and Lactobacillales; (iii) production of certain bioactive metabolites, such as low organic fatty acids; (iv) reduction in detrimental compounds, such as skatole. Our study not only evidenced the prebiotic role of PRF-enriched bread, thereby paving the road for further use of olive by-products, but also highlighted the potential of the in vitro gut model MICODE in the critical evaluation of functionality of food prototypes as modulators of the gut microbiota.
The search for new fiber supplements that can claim to be “prebiotic” is expanding fast, as the role of prebiotics and intestinal microbiota in well-being has been well established. This work explored the prebiotic potential of a novel fiber plus D-Limonene supplement (FLS) in comparison to fructooligosaccharides (FOS) over distal colonic fermentation with the in vitro model MICODE (multi-unit in vitro colon gut model). During fermentation, volatilome characterization and core microbiota quantifications were performed, then correlations among volatiles and microbes were interpreted. The results indicated that FLS generated positive effects on the host gut model, determining: (i) eubiosis; (ii) increased abundance of beneficial bacteria, as Bifidobacteriaceae; (iii) production of beneficial compounds, as n-Decanoic acid; (iv) reduction in detrimental bacteria, as Enterobaceteriaceae; (v) reduction in detrimental compounds, as skatole. The approach that we followed permitted us to describe the prebiotic potential of FLS and its ability to steadily maintain the metabolism of colon microbiota over time. This aspect is two-faced and should be investigated further because if a fast microbial turnover and production of beneficial compounds is a hallmark of a prebiotic, the ability to reduce microbiota changes and to reduce imbalances in the productions of microbial metabolites could be an added value to FLS. In fact, it has been recently demonstrated that these aspects could serve as an adjuvant in metabolic disorders and cognitive decline.
ABSTRACTIn vitro gut fermentation models were firstly introduced in nutrition and applied microbiology research back in the 1990s. These models have improved greatly during time, mainly over the resemblance to the complexity of digestion stages, the replication of experimental conditions, the multitude of ecological parameters to assay. The state of the science is that the most competitive models shall include a complex gut microbiota, small working volumes, distinct interconnected compartments and rigorous bio-chemical and ecological settings, controlled by a computer, as well as a free-hands accessibility, not to contaminate the mock microbiota. These models are a useful tool to study the impact of a given diet compound, e.g. prebiotics, on the human gut microbiota. The principal application is to focus on the shift of the core microbial groups and selected species together with their metabolites, assaying their diversity, richness and abundance in the community over time. Besides, it is possible to study how a compound is digested, which metabolic pathways are triggered, and the type and quantity of microbial metabolites produced. Further prospective should focus on challenges with pathogens as well as on ecology of gut syndromes. In this minireview an updated presentation of the most used intestinal models is presented, basing on their concept, technical features, as well as on research applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.