The use of Solid Lipid Nanoparticles (SLN) has become a very popular approach in the development of innovative pharmaceutical drug delivery systems. The first step is the assessment the lipids' suitability. This paper is focused on the physicochemical characterization of lipids, namely cetyl alcohol and cetearyl alcohol, for the production of SLN. The bulk lipids were analyzed by Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD) without any treatment, after tempering the raw materials (bulk lipid) for 1 hour at 80 °C, and after their spray-drying process. Hydrophilic-Lipophilic Balance (HLB) values were determined using a combination of surfactants (polysorbate 20 and trioleate sorbitan) for the production of the hot o/w emulsion. Results of DSC and WAXD showed that after the thermal stress applied to the bulk lipids, both the melting point and the intensity of the refractogram peaks have decreased. Cetyl alcohol and cetearyl alcohol crystallized in more unstable polymorphic forms, which anticipate the suitability of these lipids for the production of SLN. The best HLB values obtained for the produced emulsions were 15.5, 16.0, and 16.7, combining accepted surfactants. The results showed that both cetearyl alcohol and cetyl alcohol are adequate lipids for the development of stable SLN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.