Serum-based ELISA (enzyme-linked immunosorbent assay) has been widely used to detect anti–severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies. However, to date, no study has investigated patient urine as a biological sample to detect SARS-CoV-2 virus-specific antibodies. An in-house urine-based ELISA was developed using recombinant SARS-CoV-2 nucleocapsid protein. The presence of SARS-CoV-2 antibodies in urine was established, with 94% sensitivity and 100% specificity for the detection of anti–SARS-CoV-2 antibodies with the urine-based ELISA and 88% sensitivity and 100% specificity with a paired serum-based ELISA. The urine-based ELISA that detects anti–SARS-CoV-2 antibodies is a noninvasive method with potential application as a facile COVID-19 immunodiagnostic platform, which can be used to report the extent of exposure at the population level and/or to assess the risk of infection at the individual level.
Chikungunya virus (CHIKV) is a mosquito-borne pathogen that causes a disease characterized by the acute onset of fever accompanied by arthralgia and intense joint pain. Clinical similarities and cocirculation of this and other arboviruses in many tropical countries highlight the necessity for efficient and accessible diagnostic tools. CHIKV envelope proteins are highly conserved among alphaviruses and, particularly, the envelope 2 glycoprotein (CHIKV-E2) appears to be immunodominant and has a considerable serodiagnosis potential. Here, we investigate how glycosylation of CHIKV-E2 affects antigen/antibody interaction and how this affects the performance of CHIKV-E2-based Indirect ELISA tests. We compare two CHIKV-E2 recombinant antigens produced in different expression systems: prokaryotic-versus eukaryotic-made recombinant proteins. CHIKV-E2 antigens are expressed either in E. coli BL21(DE3)—a prokaryotic system unable to produce post-translational modifications—or in HEK-293T mammalian cells—a eukaryotic system able to add post-translational modifications, including glycosylation sites. Both prokaryotic and eukaryotic recombinant CHIKV-E2 react strongly to anti-CHIKV IgG antibodies, showing accuracy levels that are higher than 90%. However, the glycan-added viral antigen presents better sensitivity and specificity (85 and 98%) than the non-glycosylated antigen (81 and 71%, respectively) in anti-CHIKV IgM ELISA assays.
Background
Since the emergence of the COVID-19, health officials have struggled to devise strategies to counteract the speed of the pandemic's spread across the globe. It became imperative to implement accurate diagnostic tests for the detection of SARS-CoV-2 RNA on respiratory samples. In many places, however, besides the limited availability of test reagents, laboratory personnel face the challenge of adapting their working routines to manipulate highly infective clinical samples. Here, we proposed the use of a virus-inactivating solution as part of a sample collection kit to decrease the infectious potential of the collected material without affecting the integrity of RNA samples used in diagnostic tests based on RT-qPCR.
Methods
Nasopharyngeal and oropharyngeal swab samples were collected from SARS-CoV-2-infected patients and from laboratory personnel using a commercially available viral transport solution (VTM) and the denaturing solution (DS) described here. RNA extracted from all samples was tested by RT-qPCR using probes for viral and human genes. Exposure of laboratory personnel to infective viruses was also accessed using ELISA tests.
Findings
The use of the DS did not interfere with the detection of viral genome or the endogenous human mRNA, since similar results were obtained from samples collected with VTM or DS. In addition, all tests of laboratory personnel for the presence of viral RNA and IgG antibodies against SARS-CoV-2 were negative.
Interpretation
The methodology described here provides a strategy that allow high diagnostic accuracy as well as safe manipulation of clinical samples by those involved with diagnostic procedures.
Funding: CAPES, FAPEMIG, CNPq, MCTIC, FIOCRUZ and the UK Global Challenges Research Fund (GCRF).
There is a massive demand to identify alternative methods to detect new cases of COVID-19 as well as to investigate the epidemiology of the disease. In many countries, importation of commercial kits poses a significant impact on their testing capacity and increases the costs for the public health system. We have developed an ELISA to detect IgG antibodies against SARS-CoV-2 using a recombinant viral nucleocapsid (rN) protein expressed in E. coli. Using a total of 894 clinical samples we showed that the rN-ELISA was able to detect IgG antibodies against SARS-CoV-2 with high sen-sitivity (97.5%) and specificity (96.3%) when compared to a commercial antibody test. After three external validation studies, we showed that the test accuracy was higher than 90%. The rN-ELISA IgG kit constitutes a convenient and specific method for the large-scale determination of SARS-Cov-2 antibodies in human sera with high reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.