Over the last years anaerobic digestion has been successfully established as technology to treat organic wastes. The perspective of turning, through a low-cost process, organic wastes into biogas, a source of renewable energy and profit, has certainly increased the interest around this technology and has required several studies aimed to develop methods that could improve the performance as well as the efficiency of this process. The present work reviews the most interesting results achieved through such studies, mainly focusing on the following three aspects: (1) the analysis of the organic substrates typically co-digested to exploit their complementary characteristics; (2) the need of pre-treating the substrates before their digestion in order to change their physical and/or chemical characteristics; (3) the usefulness of mathematical models simulating the anaerobic co-digestion process. In particular these studies have demonstrated that combining different organic wastes results in a substrate better balanced and assorted in terms of nutrients, pre-treatments make organic solids more accessible and degradable to microorganisms, whereas mathematical models are extremely useful to predict the co-digestion process performance and therefore can be successfully used to choose the best substrates to mix as well as the most suitable pre-treatments to be applied
Bio-methane potential (BMP) tests are widely used in studies concerning the anaerobic digestion of organic solids. Although they are often criticized to be time consumer, with an average length longer than 30 days, such tests are doubtless easy to be conducted, relatively inexpensive and repeatable. Moreover, BMP tests give significant information about the bio-methanation of specific substrates and provide experimental results essential to calibrate and validate mathematical models. These last two aspects have been handled in this work where the following elements have been described in detail: i) the methods used to conduct the BMP tests; ii) the cumulative bio-methane curves obtained from three BMP tests, concerning respectively two pure organic substrates (swine manure-SM and greengrocery waste-GW) and an organic substrate obtained by mixing buffalo manure (BM) and maize silage (MS); iii) the procedure used to calibrate a mathematical model proposed by the authors to simulate the anaerobic digestion process; iv) the results of the calibration process. This paper shows that BMP tests are extremely helpful to determine the amount of bio-methane obtainable from different organic solids and under different operational conditions as well as the biodegradability of the investigated substrate, the relative specific rate of bio-methanation and the synergic effect of multiple co-digested substrates. Furthermore BMP tests represent an interesting tool for the technical and economical optimization of bio-methane producing plants.
The role of the moisture content and particle size (PS) on the disintegration of complex organic matter during the wet anaerobic digestion (AD) process was investigated. A range of total solids (TS) from 5% to 11.3% and PS from 0.25 to 15 mm was evaluated using carrot waste as model complex organic matter. The experimental results showed that the methane production rate decreased with higher TS and PS. A modified version of the AD model no.1 for complex organic substrates was used to model the experimental data. The simulations showed a decrease of the disintegration rate constants with increasing TS and PS. The results of the biomethanation tests were used to calibrate and validate the applied model. In particular, the values of the disintegration constant for various TS and PS were determined. The simulations showed good agreement between the numerical and observed data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.