Even though colistin-based treatment represents the antimicrobial-regimen backbone for the management of multidrug-resistant Gram-negative infections, colistin resistance is still rare, at least as a full resistance, in Acinetobacter baumannii (Ab). We investigated the genomics and transcriptomics of two clinical Extensively Drug Resistance (XDR) colistin-susceptible/resistant (COL-S/R) Ab strain-pairs in which COL-resistance was developed after exposure to colistin therapy. The molecular characterization of the strains showed that all strains belonged to PFGE-A, ST-281, OXA-23 producers, Global Clone-II, and were resistant to imipenem, meropenem, ampicillin/sulbactam, ciprofloxacin, gentamicin, amikacin, trimethoprim/sulfamethoxazole, and susceptible to tigecycline, in agreement with NGS-acquired resistome. COL-R vs. COL-S Ab comparative genomics, mapping on Ab ATCC 17978 and Ab ACICU Reference Genomes, revealed a closely related genomic phylogeny, especially between strain-pair isolates, and distinctive common genomic non-synonymous SNPs (nsSNPs) in COL-R Ab strains. Furthermore, pmrB and pmrC nsSNPs were found. Notably we recovered, for the first time, lpxC and lpxD nsSNPs previously described only in “in-vitro” mutants and associated with colistin resistance in a clinical COL-R Ab. COL-R vs. COL-S Ab comparative transcriptomics evidenced a strain-dependent response to the colistin resistance onset highly variable among the single COL-R strains vs. their COL-S parents and merely seven common over-expressed transcripts, i.e. the PgaB lipoprotein for biofilm-matrix production, the diacylglycerol kinase for the lipid recycling in the membrane-derived oligosaccharide cycle, a membrane non-ribosomal peptide synthetase, the Lipid A phosphoethanol aminotransferase PmrC, and three hypothetical proteins. The transcript analysis of the “COL-R related genes” and the RNA-seq data confirmed pmrCAB over-expression responsible for a greater positive net cell-charge, and lpxACD under-expression in COL-R causing a decreased LPS production, as main mechanisms of colistin resistance. Our study reports the COL-R Ab genomic and transcriptomic signatures reflecting the interplay between several direct and indirect potential adaptations to antimicrobial pressure, including the occurrence of SNP accumulation hotspot loci in genes related to intrinsic or adaptive colistin resistance, surface adhesion proteins and porins, and over-expressed genes involved in different pathways, i.e. biofilm production, oxidative stress response, extensive drug and COL resistance.
Daptomycin (DAP) is one of the last-resort treatments for heterogeneous vancomycinintermediate Staphylococcus aureus (hVISA) and vancomycin-intermediate S. aureus (VISA) infections. DAP resistance (DAP-R) is multifactorial and mainly related to cellenvelope modifications caused by single-nucleotide polymorphisms and/or modulation mechanisms of transcription emerging as result of a self-defense process in response to DAP exposure. Nevertheless, the role of these adaptations remains unclear. We aim to investigate the comparative genomics and late post-exponential growthphase transcriptomics of two DAP-resistant/DAP-susceptible (DAP R/S) methicillinresistant S. aureus (MRSA) clinical strain pairs to focalize the genomic and longterm transcriptomic fingerprinting and adaptations related to the DAP mechanism of action acquired in vivo under DAP pressure using Illumina whole-genome sequencing (WGS), RNA-seq, bioinformatics, and real-time qPCR validation. Comparative genomics revealed that membrane protein and transcriptional regulator coding genes emerged as shared functional coding-gene clusters harboring mutational events related to the DAP-R onset in a strain-dependent manner. Pairwise transcriptomic enrichment analysis highlighted common and strain pair-dependent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, whereas DAP R/S double-pair cross-filtering returned 53 differentially expressed genes (DEGs). A multifactorial long-term transcriptomic-network characterized DAP R MRSA includes alterations in (i) peptidoglycan biosynthesis, cell division, and cell-membrane (CM) organization genes, as well as a cidB/lytS autolysin genes; (ii) ldh2 involved in fermentative metabolism; (iii) CM-potential perturbation genes; and (iv) oxidative and heat/cold stress response-related genes. Moreover, a D-alanyl-D-alanine decrease in cell-wall muropeptide characterized DAP/glycopeptide
Methicillin-susceptible (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) is a pathogen commonly found in bone and joint infections, including septic arthritis. S. aureus virulence and the frailty of affected patients can cause several complications; a prompt and specific antibiotic treatment can positively affect the outcome of patients. We carried out an in-depth genomic characterization by Illumina whole genome sequencing and bioinformatics of two biofilm-producing M1 and M2 ST398 MSSA causing septic knee arthritis not-responding to antimicrobial therapy. The strains were characterized for antibiotic resistance, biofilm and adhesive properties as well as genomics, single nucleotide polymorphism phylogeny, resistomics and virulomics. Our results showed that M1 and M2 MSSA were ST398-t1451-agrI-Cap5, susceptible to cefoxitin and resistant to erythromycin and clindamycin, traits consistent with the lack of the SCCmec-locus and the presence of the sole blaZ and ermT. Furthermore, M1 and M2 were biofilm-producing and largely potentially adhesive strains, as indicated by the adhesion gene profile. Our data characterized a new human-adapted ST398 MSSA lineage, representing a “fusion” between the human-animal independent ST398 and the Livestock Associated (LA) ST398 lineages, forming biofilm and genomically predicted high adhesive, characterized by different genomic adaptation conferring a great ability to adhere to the host’s extracellular matrix causing septic knee arthritis.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) with intermediate resistance to Vancomycin (VISA) is reported worldwide. These strains frequently emerge among hospital-associated (HA)-MRSA and rarely within community-acquired (CA)-MRSA. Here, the genomic and transcriptomic adaptations distinguishing VISA daptomycin resistant (DAP-R) CA-MRSA, which emerged in a hospitalized patient under glycopeptide treatment, were explored. Methods: Whole-genome sequencing, RNA-Seq and bioinformatics were carried out. Results: Our CA-MRSA clustered in the USA400 lineage showing additional antimicrobial resistance (AMR) versus DAP and glycopeptides. Resistomics revealed adaptations related to glycopeptide, daptomycin and rifampin resistance (mprF nsSNPS and overexpression of glycopeptide and daptomycin-resistance related genes). Similar changes were detected in virulence traits (agrA HI-nsSNPs and toxin gene underexpression), in which a decrease was observed despite the abundance of virulence-related genes. Our results predicted a balance in adaptations, decreasing the virulence and biological costs to support the co-occurrence of extensive AMR in a hypervirulent genomic background. Conclusion: Our data show that VISA DAP-R CA-MRSA shifts the potential hypervirulent behavior of CA-MRSA towards the acquisition and maintenance of extensive AMR, by a decrease in virulence and biological costs mediated by a “compensatory modulatory mutation” silencing the Agr quorum-sensing cascade.
Multidrug-Resistant (MDR) and Extensively Drug Resistant (XDR) Acinetobacter baumannii (Ab) represent a serious cause of healthcare-associated infections worldwide. Currently, the available treatment options are very restricted and colistin-based therapies are last-line treatments of these infections, even though colistin resistant (COL R) Ab have rarely been isolated yet. In bacteria, small non-coding RNAs (sRNAs) have been implicated in regulatory pathways of different biological functions, however, no knowledge exists about the sRNA role on the biological adaptation in COL R Ab. Our study investigated two Italian XDR isogenic colistin-susceptible/resistant (COL S/R) Ab strain-pairs to discover new sRNA signatures. Comparative sRNA transcriptome (sRNAome) analyses were carried out by Illumina RNA-seq using both a Tru-Seq and a Short Insert library, whilst Ab ATCC 17978 and ACICU Reference Genome assembly, mapping, annotation and statistically significant differential expression (qvalue ≤ 0.01) of the raw reads were performed by the Rockhopper tool. A computational filtering, sorting only similarly statistically significant differentially expressed (DE) sRNAs mapping on the same gene in both COL R Ab isolates was conducted. COL R vs. COL S sRNAome, analyzed integrating the DE sRNAs obtained from the two different libraries, revealed some statistically significant DE sRNAs in COL R Ab. In detail, we found: (i) two different under-expressed cis-acting sRNAs (AbsRNA 1 and AbsRNA 2) mapping in antisense orientation the 16S rRNA gene A1S_r01, (ii) one under-expressed cis-acting sRNA (AbsRNA 3) targeting the A1S_2505 gene (hypothetical protein), (iii) one underexpressed microRNA-size small RNA fragment (AbsRNA 4) and its pre-microAbsRNA 4 targeting the A1S_0501 gene (hypothetical protein), (iv) as well as an over-expressed microRNA-size small RNA fragment (AbsRNA 5) and its pre-microAbsRNA 5 targeting the A1S_3097 gene (signal peptide). Custom TaqMan R probe-based real-time qPCRs validated the expression pattern of the selected sRNA candidates shown by RNA-seq. Furthermore, analysis on sRNA A1S_r01, A1S_2505 as well as the over-expressed A1S_3097 mutants revealed no effects on colistin resistance. Our study, for the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.