Synthesis and molecular and supramolecular structures of a series of triarylphosphines P(Ph) 3−n {4-RO-3,5-( t Bu) 2 -C 6 H 2 } n (n = 1, 3; R = SiMe 3 , H) are reported. Chemical oxidation products E=P(Ph) 3−n {4-RO-3,5-( t Bu) 2 -C 6 H 2 } n (E = O, S, and Se; n = 1, 3; R = SiMe 3 , H) are also reported. Crystal structures of the reported compounds were determined by single-crystal X-ray diffraction, using a Hirshfeld atom refinement with NoSpherA2 through OLEX2, which provides an average improvement in C−C bond distance precision of 35%. Phosphine basicity for the phosphines with n = 1, R = H and n = 3, R = SiMe 3 , H was determined using the 1 J P,Se values of the respective selenides; 1 J P,Se = 699 Hz for E = Se, n = 3, and X = H identifies the most basic triarylphosphine ever reported. Intermolecular interactions allow classification of the 17 structures into 4 categories: those with only dispersion-induced short contacts, those with frustration of H-bonding, those with only classic H-bonding, and those with combinations of classic and frustration of H-bonding. A "double phenol embrace" classified by an R 2 2 (4) graph set is a weak intermolecular synthon organizing lattices with 2,6-ditertbutylphenol functional groups. Classic H-bonding occurs only when E = O.
The crystal structures of 5-bromo-1,3-di-tert-butyl-2-[(trimethylsilyl)oxy]benzene, C17H29BrOSi, (I), 1,3-di-tert-butyl-2-[(trimethylsilyl)oxy]benzene, C17H30OSi, (II), and N-(2,6-diisopropylphenyl)-1,1,1-trimethyl-N-(trimethylsilyl)silanamine, C18H35NSi2, (III), are reported. Compound (I) crystallizes in space group P21/c with Z′ = 1, (II) in Pnma with Z′ = 0.5 and (III) in Cmcm with Z′ = 0.25. Consequently, the molecules of (II) are constrained by m and those of (III) by m2m site symmetries. Despite this, both (I) and (II) are distorted towards mild boat conformations, as is typical of 2,6-di-tert-butyl-substituted phenyl compounds, reflecting the high local steric pressure of the flanking alkyl groups. Compound (III) by contrast is planar and symmetric, and this lack of distortion is compatible with the lower steric pressure of the flanking 2,6-diisopropyl substituents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.