The trophectoderm-derived factor interferon tau (IFNT) maintains the uterus in a pregnancy-receptive state in cattle and sheep. Fibroblast growth factors (FGFs) are implicated in regulating IFNT expression and potentially other critical events associated with early conceptus development in cattle. The overall objectives of this work were to identify the various FGFs and FGF receptors (FGFRs) expressed in elongating pre-attachment bovine conceptuses and determine if these FGFs regulate conceptus development and/or mediate IFNT production. In vitro-derived bovine blastocysts and in vivo-derived elongated conceptuses collected at day 17 of pregnancy express at least four FGFR subtypes (R1c, R2b, R3c, R4). In addition, transcripts for FGF1, 2, and 10 but not FGF7 are present in elongated bovine conceptuses. The expression pattern of FGF10 most closely resembled that of IFNT, with both transcripts remaining low in day 8 and day 11 conceptuses and increasing substantially in day 14 and day 17 conceptuses. Supplementation with recombinant FGF1, 2 or 10 increased IFNT mRNA levels in bovine trophectoderm cells and bovine blastocysts and increased IFNT protein concentrations in trophectoderm-conditioned medium. Blastocyst development was not affected by any of the FGFs. In summary, at least four FGFRs reside in pre-and peri-attachment bovine conceptuses. Moreover, conceptuses express at least three candidate FGFs during elongation, the time of peak IFNT expression. These findings provide new insight for how conceptus-derived factors such as FGF1, 2, and 10 may control IFNT expression during early pregnancy in cattle.
Most of the current culture procedures used for bovine in vitro embryo production terminates at the blastocyst stage. Developing procedures for extending embryo lifespan beyond this phase will provide a valuable tool for understanding events that occur during the second week of pregnancy in cattle. The overall objective of the present studies was to identify culture conditions required to support bovine blastocyst development beyond its initial formation. In the first study, individual day 8 blastocysts (day 0 = day of IVF) were cultured until day 11 in 30 µL microdrops of Potassium Simplex Optimized Medium-Bovine Embryo 2 containing 0.1 mm non-essential amino acids or Tissue Culture Medium 199 (M199). Both media were supplemented with 5% [v/v] fetal bovine serum (FBS) and incubations were in an atmosphere of either 5 or 21% (v/v) oxygen. A medium by oxygen interaction (P = 0.007) occurred when assessing cell number on day 11. Blastocysts cultured in M199 and in a 5% O2 environment had greater (P < 0.002) cell numbers (536 � 49) than blastocysts incubated in other conditions (339 � 28). Conditioned medium from blastocysts incubated in 21% O2 contained greater (P < 0.05) concentrations of bioactive interferon-tau (IFNT) than blastocysts incubated in 5% O2 regardless of medium type (70.5 � 28 v. 17.2 � 2.6 ng mL–1). In a follow-up study, blastocysts could remain morphologically viable through day 11 in M199 containing at least 2.5% FBS. To examine whether oxidative stress was responsible for the increase in IFNT production under 21% O2, blastocysts were incubated under a 5% O2 atmosphere in M199 containing 2.5% FBS and increasing concentrations of tert-butylhydroperoxide (tBH), a membrane-permeable oxidative agent. Addition of e3 nm tBH decreased cell numbers but did not increase IFNT concentrations in conditioned medium. To examine whether blastocysts could survive beyond day 11 in culture, day 11 blastocysts were transferred to 400 �L of M199 with 20% FBS under 5% oxygen and cultured from day 11 to 20–21 post-IVF. Half of the medium was replaced every 2–3 days. On day 13–14, 16.6 � 6.1% of blastocysts showed initial signs of degeneration. A portion of blastocysts (32.9 � 9.6%) began attaching to plates on days 13–15 and produced outgrowths that appeared viable on days 20–21. All of the non-attached blastocysts degenerated by day 17–18. No blastocyst elongation was detected. In conclusion, a culture system was developed that sustains blastocyst viability and IFNT production in vitro to day 11. Although this culture system allowed blastocyst survival until day 14, normal conceptus development (i.e. elongation/filamentation) was not achieved. Nonetheless, the culture system provides a useful tool for examining the initial stages of blastocyst development and IFNT production from individual bovine embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.