Different mechanisms have been hypothesized to explain the increase in prevalence and severity of periodontitis in older adults, including shifts in the periodontal microbiota. However, the actual impact of aging in the composition of subgingival biofilms remains unclear. In the present article, we provide an overview of the composition of the subgingival biofilm in older adults and the potential effects of age on the oral microbiome. In particular, this review covers the following topics: (i) the oral microbiota of an aging mouth, (ii) the effects of age and time on the human oral microbiome, (iii) the potential impact of inflammaging and immunosenescence in the host-oral microbiota interactions, and (iv) the relationship of the aging oral microbiota and Alzheimer’s disease. Finally, in order to explore in greater breadth the potential effects of aging on the periodontal microbiota, we present analyses of data compiled from large clinical studies that evaluated the subgingival microbiota of periodontally healthy subjects and periodontitis patients from a wide age spectrum (20–83 years old). Those studies were conducted at Guarulhos University (São Paulo, SP, Brazil) and at The Forsyth Institute (Cambridge, USA), from 1999 to 2014.
The peri-implantitis microbiome is commensal-depleted and pathogen-enriched, harbouring traditional and new pathogens. The core peri-implant microbiome harbours taxa from genera often associated with periodontal inflammation.
Aim-To examine relationships between subgingival biofilm composition and levels of gingival crevicular fluid (GCF) cytokines in periodontal health and generalized aggressive periodontitis (GAP).Materials and methods-Periodontal parameters were measured in 25 periodontally healthy and 31 GAP subjects. Subgingival plaque and GCF samples were obtained from 14 sites from each subject. 40 subgingival taxa were quantified using checkerboard DNA-DNA hybridization and the concentrations of 8 GCF cytokines measured using Luminex. Cluster analysis was used to define sites with similar subgingival microbiotas in each clinical group. Significance of differences in clinical, microbiological and immunological parameters among clusters was determined using the Kruskal-Wallis test.Results-GAP subjects had statistically significantly higher GCF levels of interleukin-1β (IL-1β) (p<0.001), granulocyte-macrophage colony-stimulating factor (GM-CSF) (p<0.01), and IL-1β/IL-10 ratio (p<0.001) and higher proportions of Red and Orange complex species than periodontally healthy subjects. There were no statistically significant differences in the mean proportion of cytokines among clusters in the periodontally healthy subjects, while the ratio IL-1β/ IL-10 (p<0.05) differed significantly among clusters in the aggressive periodontitis group.Conclusions-Different subgingival biofilm profiles are associated with distinct patterns of GCF cytokine expression. Aggressive periodontitis subjects were characterized by a higher IL-1β/ IL-10 ratio than periodontally healthy subjects, suggesting an imbalance between pro-and antiinflammatory cytokines in aggressive periodontitis. KeywordsGeneralized aggressive periodontitis; microbiota; gingival crevicular fluid; biomarkers Clinical RelevanceScientific rationale for study: Periodontal diseases result from interactions between specific subgingival microbial species and the susceptible host. However, very little is known regarding the impact of the subgingival biofilm composition on the secretion of biomarkers by the adjacent periodontal tissues.
In recent years, several new periodontal taxa have been associated with the etiology of periodontitis. A recent systematic review provides further support for the pathogenic role of 17 species/phylotypes. Thus, the aim of this study was to assess the prevalence and levels of these species in subjects with generalized chronic periodontitis (GChP; n = 30), generalized aggressive periodontitis (GAgP; n = 30), and periodontal health (PH; n = 30). All subjects underwent clinical and microbiological assessment. Nine subgingival plaque samples were collected from each subject and analyzed for their content of 20 bacterial species/phylotypes through the RNA-oligonucleotide quantification technique. Subjects from the GChP and GAgP groups presented the highest mean values for all clinical parameters in comparison with the PH group (P < 0.05). Subjects with GChP and GAgP showed significantly higher mean levels of Bacteroidetes sp. human oral taxon (HOT) 274, Fretibacterium sp. HOT 360, and TM7 sp. HOT 356 phylotypes, as well as higher mean levels of Filifactor alocis, Fretibacterium fastidiosum, Porphyromonas gingivalis, Tannerella forsythia, and Selenomonas sputigena species than PH subjects (P < 0.05). GAgP subjects presented higher mean levels of TM7 sp. HOT 356 and F. alocis than GChP subjects (P < 0.05). A significantly higher mean prevalence of Bacteroidales sp. HOT 274, Desulfobulbus sp. HOT 041, Fretibacterium sp. HOT 360, and Fretibacterium sp. HOT 362 was found in subjects with GChP and GAgP than in PH subjects. Mean levels of P. gingivalis (r = 0.68), T. forsythia (r = 0.62), F. alocis (r = 0.51, P = 0.001), and Fretibacterium sp. HOT 360 (r = 0.41) were correlated with pocket depth (P < 0.001). In conclusion, Bacteroidales sp. HOT 274, Desulfobulbus sp. HOT 041, Fretibacterium sp. HOT 360, Fretibacterium sp. HOT 362, and TM7 sp. HOT 356 phylotypes, in addition to F. alocis, F. fastidiosum, and S. sputigena, seem to be associated with periodontitis, and their role in periodontal pathogenesis should be further investigated.
Objective To determine the order of bacterial species succession in re-developing supra and subgingival biofilms. Methods Supra and subgingival plaque samples were taken separately from 28 teeth in 38 healthy and 17 periodontitis subjects immediately after professional cleaning. Samples were taken again from 7 teeth in randomly selected quadrants after 1, 2, 4 and 7 days of no oral hygiene and analyzed using checkerboard DNA-DNA hybridization. % DNA probe counts were averaged within subjects at each time point. Ecological succession was determined using a modified moving window analysis. Results Succession in supragingival biofilms from periodontitis and health was similar. At 1 day, Streptococcus mitis and Neisseria mucosa showed increased proportions, followed by Capnocytophaga gingivalis, Eikenella corrodens, Veillonella parvula and Streptococcus oralis at 1–4 days. At 4–7 days, Campylobacter rectus, Campylobacter showae, Prevotella melaninogenica and Prevotella nigrescens became elevated. Subgingival plaque redevelopment was slower and very different from supragingival. Increased proportions were first observed for S. mitis, followed by V. parvula and C. gingivalis and, at 7 days by Capnocytophaga sputigena and P. nigrescens. No significant increase in proportions of periodontal pathogens was observed in any of the clinical groups or locations. Conclusions There is a defined order in bacterial species succession in early supra and subgingival biofilm re-development after professional cleaning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.