Aims: Penicillium digitatum, Alternaria alternata and Colletotrichum gloeosporioides are pathogens responsible for large decays and production losses of citrus. They are commonly controlled by fungicides, whose excessive applications have led to the emergence of resistant P. digitatum strains. Alternative approaches are imperative for sustainable and environmental harmless citrus production, being biological control a promising strategy. The objective was to evaluate the potential of Trichoderma strains native from the rhizosphere of citrus trees to control these pathogens. Methods and Results: Seven strains were isolated and identified as Trichoderma harzianum, T. guizhouense, T. atroviride and T. koningiopsis through morphological and molecular analyses. Five of them showed effective antagonist performance in vitro against the pathogens. The strain T. harzianum IC-30 was the best biological control agent in vivo, obtaining a reduction of rot percentage around 80% after 3 weeks of infection of oranges with P. digitatum A21 (resistant to pyrimethanil). This strain also showed the highest chitinase and glucanase activities. Conclusions: Trichoderma harzianum IC-30 is an optimal antagonist for the control of green mould spreading and other pathogens in post-harvest citrus fruits. Significance and Impact of the Study: The strain combined with supplementary practices could lead to sustainable management of citrus fungal diseases, dispensing with synthetic fungicides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.