Podocytes play a critical role in maintaining glomerular permselectivity. It has been long recognized that their intricate actin-based structures are tightly associated with their normal function; however, the precise mechanisms by which podocytes form and maintain their complex structure had been poorly understood until the intensive investigations on podocyte biology began in 1998, triggered by the breakthrough discovery of nephrin. This review summarizes the recent discoveries of the molecular mechanisms by which the actin cytoskeleton is regulated in podocytes. A particular focus will be on the role of the Rho-family of small GTPases, represented by RhoA, Rac1, and Cdc42. Rho-GTPases are known for their versatile cellular functions, most importantly for the actin regulatory roles. We will also discuss the potential roles of the 3 groups of proteins known to regulate Rho-GTPases, namely GTPase-activating proteins, guanine nucleotide exchange factors, and guanine nucleotide dissociation inhibitors.
Glomerulosclerosis is featured by accumulation of the extracellular matrixes in the glomerulus. We showed previously that activation of the small GTPase RhoA in podocytes induces heavy proteinuria and glomerulosclerosis in the mouse. In the current study, we investigated the mechanism by which RhoA stimulates the production of one of the extracellular matrixes, fibronectin, by podocytes, specifically testing the role of nuclear factor of activated T cells (NFAT). Expression of constitutively active RhoA in cultured podocytes activated the fibronectin promoter, upregulated fibronectin protein, and activated NFAT. Expression of constitutively active NFAT in podocytes also activated the fibronectin promoter and upregulated fibronectin protein. RhoA-induced NFAT activation and fibronectin upregulation were both dependent on the calcium/calmodulin pathway and Rho kinase. NFAT activation was also observed in vivo in the rat and mouse models of podocyte injury and proteinuria, and NFAT inhibition ameliorated fibronectin upregulation in the latter. RhoA activation induced a rise of intracellular calcium ion concentration ([Ca2+]i), which was at least in part dependent on the transient receptor potential canonical 6 (TRPC6) cation channel. The results indicate that RhoA activates NFAT by inducing a rise of [Ca2+]i in podocytes, which in turn contributes to fibronectin upregulation. This pathway may be responsible for the pathogenesis of certain glomerular diseases such as hypertension-mediated glomerulosclerosis.
Background: Disruption of the actin cytoskeleton-dependent structural integrity of glomerular epithelial cells (GEC) leads to glomerular dysfunction. Results: We have identified molecular mechanisms through which the injury-causing complement complex induces cytoskeletal changes in GEC. Conclusion: Complement-induced activation of the ERK/GEF-H1/RhoA pathway protects GEC from cell death. Significance: This study furthers our understanding of mechanisms underlying GEC foot process effacement and functional impairment in immune mediated glomerular diseases.
Abstract:Glomerulus is the filtration unit of the kidney where the first step of urine formation takes place. In the glomerulus, water and small molecules including waste products of the body are filtered into the urine, while large molecules essential for body function such as albumin are retained. When this barrier function of the kidney is impaired, protein leakage into the urine (proteinuria) occurs. Proteinuria is not only a hallmark of many glomerular diseases but also a prognostic marker of kidney disease progression. Visceral glomerular epithelial cells (commonly called podocytes) are known to have an important role in the maintenance of glomerular barrier function. In the last decade, remarkable progress has been made in podocyte biology, mainly led by the discoveries of important proteins that work together to maintain the intricate morphology and function of podocytes. Most of these so-called podocyte proteins modulate the actin cytoskeleton either directly or indirectly. The aim of the current review is to discuss the pathogenesis of common glomerular diseases with a particular focus on the role of the actin cytoskeleton in podocytes. The diseases covered include minimal change disease, focal segmental glomerulosclerosis (idiopathic and hereditary), membranous nephropathy, hypertensive glomerulosclerosis, and diabetic nephropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.