We report Arecibo S-band (2380 MHz; 12.6 cm) radar observations of near-Earth asteroid (3200) Phaethon during the December 2017 apparition when Phaethon passed within 0.07 au of Earth. Radar images with a resolution of 75 m per pixel reveal a roughly spheroidal shape more than 6 km in diameter at the equator with several discernible surface features hundreds of meters in extent. These include a possible crater more than 1 km across located below 30 • latitude and a roughly 600-m radar-dark region near one of the poles. Overall, the radar images of Phaethon are reminiscent of those of (101955) Bennu, target of the OSIRIS-REx mission. As such, the shape of Phaethon is suspected to have an equatorial ridge similar to the top-shaped models of several other radar-observed near-Earth asteroids as well as the optical images of (162173) Ryugu returned by the Hayabusa2 spacecraft. Preliminary analysis of the radar data finds no satellites and gives no indication of a dusty coma at the time of these observations.
We successfully observed 191 near-Earth asteroids using the Arecibo Observatory’s S-band planetary radar system from 2017 December through 2019 December. We present radar cross sections for 167 asteroids; circular-polarization ratios for 112 asteroids based on Doppler-echo-power spectra measurements; and radar albedos, constraints on size and spin periods, and surface-feature and shape evaluation for 37 selected asteroids using delay-Doppler radar images with a range resolution of 75 m or finer. Out of 33 asteroids with an estimated effective diameter of at least 200 m and sufficient image quality to give clues of the shape, at least 4 (∼12%) are binary asteroids, including 1 equal-mass binary asteroid, 2017 YE5, and at least 10 (∼30%) are contact-binary asteroids. For 5 out of 112 asteroids with reliable measurements in both circular polarizations, we measured circular-polarization ratios greater than 1.0, which could indicate that they are E-type asteroids, while the mean and the 1σ standard deviation were 0.37 ± 0.23. Further, we find a mean opposite-sense circular-polarization radar albedo of 0.21 ± 0.11 for 41 asteroids (0.19 ± 0.06 for 11 S-complex asteroids). We identified two asteroids, 2011 WN15 and (505657) 2014 SR339, as possible metal-rich objects based on their unusually high radar albedos, and discuss possible evidence of water ice in 2017 YE5.
NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.