New technologies and higher prices of raw materials have promoted the expansion of mining activity throughout the world; if not properly regulated, this activity can lead to contamination of the local and regional environment. The city of Cerro de Pasco is located close to a large open-pit mine and in recent years, several reports have provided evidence of environmental contamination and related health problems. The aim of this paper is to evaluate the contamination in fluvial water, sediments and biological fluids from this area. The collective results show elevated metal and metalloid concentrations in rivers and sediments, especially in the areas downstream of the mine. For instance, Pb concentration in rivers downstream of the mine was 4.451 mg/L, while it was 0.037 mg/L upstream of the mine. Sediments also show higher concentration of metals and metalloids in the areas under the influence of the mine. Concentrations of elements in human blood were measured in the population of Paragsha, a village close to the mine. Analysis of the blood samples revealed elevated levels of metals and metalloids, particularly Pb, Cr, Al, Ni and Mn. All of the studied population showed blood concentrations of Al, Cr and Ni higher than those recommended by the WHO. The high concentration of elements found in the blood of the population could be related to the high concentration in the surrounding water sources, but further studies are required to determine the exact sources of exposure to these metals and metalloids.
The Peruvian Andes are one of the most productive areas for mining and therefore also one of the most exposed to these sources of pollution. This article reports the characterization of Polycyclic Aromatic Hydrocarbons (PAHs) in sediments of Cerro de Pasco area (Peru) located close to a large open-pit mine and, in recent years, several reports have provided evidence of environmental contamination and related health problems. Investigations were carried out into the fifteen PAHs identified by the US-Environment Protection Agency (US-EPA) as requiring priority monitoring, other non US-EPA listed PAHs and perylene were also investigated in order to obtain further information on their origins. By considering the results of all the analysis, the total PAHs concentration varies from 13–1009 μg/Kg with a mean value of 224 μg/Kg. The concentrations of PAHs found in all 12 stations were lower than the effect range low (ERL). PAHs, in the most of the samples, have origin from high temperature processes. Taking into consideration that perylene concentrations were low, a small quantity of polycyclic hydrocarbons may be originated from biological activity
Cerro de Pasco, Peru, has been excessively contaminated with heavy metals due to high mining activities in the region. We investigated the presence of chronic exposure to heavy metals in children living in Cerro de Pasco and its effect on health. Heavy metal concentrations were determined in hair samples collected from 78 children living in a region exposed to an open-pit mine (Paragsha region) and from other 16 children unexposed to mine activities (Carhuamayo region). Children exposed to the mine showed statistically significant higher concentration of aluminum, antimony, arsenic, cadmium, chromium, iron, lead, tin and thallium (p < 0.05) than control children. Hair samples collected from the same children in two occasions (2016 and 2018) showed that the exposure is chronic with higher levels of heavy metals observed in 2018. The concentration of heavy metals was higher in hair tip than in hair root samples. Heavy metals are associated with substantial higher risk of nosebleed (odds ratio, OR = 15.40), chronic colic (OR = 7.30), dermatologic alterations (OR = 6.16), mood alterations (OR = 7.07), presence of white lines on nails (OR = 12.10), reduced visual camp (OR = 3.97) and other symptoms (OR = 5.12). Chronic heavy metal exposure implies various negative consequences on children’s health. Preventive measures are crucial to protect children’s health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.