The present manuscript describes a biomarker capturing strategy based on nanoporous silica particles. The method is shown to enrich the yield of species in the low‐molecular weight proteome (LMWP), allowing detection of small peptides in the low‐nanomolar range. Plasma samples were exposed to the silica particles, and the captured molecular species were profiled using MALDI‐TOF. Mass spectra of the silica‐treated human plasma samples showed a significant enrichment in MALDI‐TOF protein profiles in the LMWP. Preliminary results indicated good level of reproducibility in plasma profiles with CVs on peak heights ranging from 6.3 to 14.7%. The MALDI‐TOF signature changed significantly when the characteristics of the nanoporous silica were altered. The facile sample pretreatment before MS analysis, coupled to the potential for tailoring the surface properties of silica supports, hold promise for improving the recovery of low‐abundance serum biomarkers.
A mesoporous material based on aluminosilicate mixture was studied to investigate its ability to include drugs and then release them. Nonsteroidal anti-inflammatory agents such as diflunisal, naproxen, ibuprofen and its sodium salt have been used in this study. The preparation of the mesoporous material and its characterization by X-ray, N2 absorption-desorption isotherm, and thermogravimetry analysis have been described. Drug loading was performed by a soaking procedure. Drug-loaded matrices were characterized for entrapped drug amount, water absorption ability, and thermogravimetric behavior. Drug release studies also were performed at pH 1.1 and 6.8 mimicking gastrointestinal fluids. Experimental results showed that this type of matrix is able to trap the bioactive agents by a soaking procedure and, then, to release them in conditions mimicking the biological fluids. Also, the high affinity of these matrices for water makes them potentially biocompatible. Release data suggest that the matrix impregnated with diflunisal offers good potential as a system for the modified drug release.
Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae-mediated, endocytosis. Moreover, internalized particles seem to be mostly exocytosed from cells within 96 h. Finally, cisplatin (Cp) loaded MSN-FOL were tested on cancerous FR-positive (HeLa) or normal FR-negative (HEK293) cells. A strong growth arrest was observed only in HeLa cells treated with MSN-FOL-Cp. The results presented here show that our mesoporous nanoparticles do not enter cells unless opportunely functionalized, suggesting that they could represent a promising vehicle for drug targeting applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.