Aim Mounting evidence suggests that failure of species distribution models to integrate local adaptation hinders our ability to predict distribution ranges, raising the question of whether modelling should be performed at the level of species (clade models) or intraspecific lineages (subclade models), characterized by the restricted availability of occurrence points. While Ensembles of Small Models (ESMs) offer an attractive framework for small datasets, their evaluation remains critical. We address these issues in the case of very small datasets inherent to subclade models and discuss which modelling strategy should be applied based on niche overlap among lineages. Location Sweden. Taxon Mosses. Methods Ensembles of Small Models were evaluated by null models built from randomly sampled presence points. We compared the extent of suitable area predicted by the projections of clade and subclade models. Niche overlap was quantified using Schoener's D and Hellinger'sImetrics, and the significance of these metrics in terms of niche conservatism or divergence was assessed by similarity tests. Results We introduced a simple procedure for evaluating ESMs based on the pooling of the statistics used to assess model accuracy from the replicates. Despite fairly high AUC and TSS values, 2 of the 23 subclade models did not perform better than null models and should be discarded. Combined predictions from subclade models contributed, on average, five times more than clade models to the total suitable area predicted by the combination of subclade and clade models. The D and I metrics averaged 0.45 and 0.71, with evidence for niche conservatism in half of the species and no signal for niche divergence. Main conclusions In addition to the assessment of ESM accuracy based on the simple procedure described here, we recommend that ESMs should be systematically evaluated against null models. Lumping or splitting occurrence data at the intraspecific level substantially impacted model projections. Given the poor performance of models based on small datasets, even when employing ESMs, we pragmatically suggest that, in the absence of evidence for niche divergence during diversification of closely related intraspecific lineages, SDMs should be based on all available occurrence data at the species level.
The extent to which species can balance out the loss of suitable habitats due to climate warming by shifting their ranges is an area of controversy. Here, we assess whether highly efficient wind-dispersed organisms like bryophytes can keep-up with projected shifts in their areas of suitable climate. Using a hybrid statistical-mechanistic approach accounting for spatial and temporal variations in both climatic and wind conditions, we simulate future migrations across Europe for 40 bryophyte species until 2050. The median ratios between predicted range loss vs expansion by 2050 across species and climate change scenarios range from 1.6 to 3.3 when only shifts in climatic suitability were considered, but increase to 34.7–96.8 when species dispersal abilities are added to our models. This highlights the importance of accounting for dispersal restrictions when projecting future distribution ranges and suggests that even highly dispersive organisms like bryophytes are not equipped to fully track the rates of ongoing climate change in the course of the next decades.
1. Epiphytic communities offer an original framework to disentangle the contributions of environmental filters, biotic interactions and dispersal limitations to community structure at fine spatial scales. We determine here whether variations in light, microclimatic conditions and host tree size affect the variation in species composition and phylogenetic structure of epiphytic bryophyte communities, and hence, assess the contribution of environmental filtering, phylogenetic constraints and competition to community assembly.2. A canopy crane giving access to 1.1 ha of tropical rainforest in Yunnan (China) was employed to record hourly light and microclimatic conditions from 54 dataloggers and epiphytic bryophyte communities from 408 plots. Generalized Dissimilarity Modelling was implemented to analyse the relationship between taxonomic and phylogenetic turnover among epiphytic communities, host-tree characteristics and microclimatic variation.3. Within-tree vertical turnover of bryophyte communities was significantly about 30% higher than horizontal turnover among-trees. Thus, the sharp vertical variations in microclimatic conditions from tree base to canopy are more important than differences in age, reflecting the likelihood of colonization, area, and
Phylogenetic turnover has emerged as a powerful tool to identify the mechanisms by which biological communities assemble. When significantly structured along environmental gradients, phylogenetic turnover evidences phylogenetic niche conservatism, a critical principle explaining patterns of species distributions at different spatio-temporal scales. Here, we quantify the contribution of geographic and macroclimatic drivers to explain patterns of phylogenetic turnover in an entire phylum of land plants, namely liverworts. We further determine whether climatic niche conservatism has constrained the distribution of liverworts in the course of their evolutionary history. Two datasets, one insular, focused on 60 archipelagos and including 2346 species, and the second global, including 6334 species in 451 oceanic and continental operational geographic units (OGUs) worldwide, were assembled. Phylogenetic turnover among OGUs was quantified through π st statistics. π st -through-time profiles were generated at 1 Myr intervals along the phylogenetic time-scale and used to compute the correlation between π st , current geographic distance and macroclimatic variation with Mantel tests based on Moran spectral randomization to control for spatial autocorrelation. The contribution of macroclimatic variation to phylogenetic turnover was about fourtimes higher than that of geographic distance, a pattern that was consistently observed in island and global geographic settings, and with datasets including or excluding species-poor OGUs. The correlation between phylogenetic turnover and geographic distance rapidly decayed at increasing phylogenetic depth, whereas the relationship with macroclimatic variation remained constant until 100 Mya. Our analyses reveal that changes in the phylogenetic composition among liverwort floras across the globe are primarily shaped by macroclimatic variation. They demonstrate the relevance of macroclimatic niche conservatism for the assembly of liverwort floras over very large spatial and evolutionary time scales, which may explain why such a pervasive biodiversity pattern as the increase of species richness towards the tropics also applies to organisms with high dispersal capacities.
Aim How spatial, historical and ecological processes drive diversity patterns remains one of the main foci of island biogeography. We determined how beta diversity varies across spatial scales and among organisms, disentangled the drivers of this variation, and examined how, consequently, biogeographic affinities within and among archipelagos vary among land plants. Location Macaronesia. Taxon Bryophytes, pteridophytes, spermatophytes. Methods Species turnover and nestedness were compared within and among archipelagos across taxonomic groups. The relationship between species turnover and nestedness, climatic, geological and geographic factors was analysed using generalized dissimilarity models. Results Species turnover, but not nestedness, increased with the geographic scale. This increment decreased from spermatophytes, pteridophytes and bryophytes, wherein the median turnover was less than half that in spermatophytes. Bryophytes exhibited a significantly higher nestedness and lower turnover than spermatophytes. Extant climatic conditions and island age contributed the most to all models but the importance of island age for bryophyte and pteridophyte turnover was marginal. Spermatophyte floras clustered by archipelago, whereas the clustering patterns in pteridophyte and bryophyte floras reflected macroclimatic conditions. Main Conclusions The lower increment of species turnover with spatial scale and the higher nestedness in bryophytes and pteridophytes than in spermatophytes reflect the variation in dispersal capacities and distribution ranges among land plants. Accordingly, extant climatic conditions contributed more to explain turnover in bryophytes and pteridophytes than in spermatophytes, whereas factors associated with dispersal limitations, including island age, geographic distance and archipelago structure, exhibited the reverse trend. The differences in beta diversity patterns, caused by different responses of Macaronesian land plant lineages to the main factors shaping their community composition, explain their different biogeographic affinities. These differences reflect a distinct origin and different mechanisms of speciation among Macaronesian land plant lineages and archipelagos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.