We study roughness scaling of the outer surface and the internal porous structure of deposits generated with the three-dimensional bidisperse ballistic deposition (BBD), in which particles of two sizes are randomly deposited. Systematic extrapolation of roughness and dynamical exponents and the comparison of roughness distributions indicate that the top surface has Kardar-ParisiZhang scaling for any ratio F of the flux between large and small particles. A scaling theory predicts the characteristic time of the crossover from random to correlated growth in BBD and provides relations between the amplitudes of roughness scaling and F in the KPZ regime. The porosity of the deposits monotonically increases with F and scales as F 1/2 for small F , which is also explained by the scaling approach and illustrates the possibility of connecting surface growth rules and bulk properties. The suppression of relaxation mechanisms in BBD enhances the connectivity of the deposits when compared to other ballisticlike models, so that they percolate down to F ≈ 0.05.The fractal dimension of the internal surface of the percolating deposits is D F ≈ 2.9, which is very close to the values in other ballisticlike models and suggests universality among these systems.
Langevin equations for several competitive growth models in one dimension are derived. For models with crossover from random deposition (RD) to some correlated deposition (CD) dynamics, with small probability p of CD, the surface tension ν and the nonlinear coefficient λ of the associated equations have linear dependence on p due solely to this random choice. However, they also depend on the regularized step functions present in the analytical representations of the CD, whose expansion coefficients scale with p according to the divergence of local height differences when p→0. The superposition of those scaling factors gives ν~p(2) for random deposition with surface relaxation (RDSR) as the CD, and ν~p, λ~p(3/2) for ballistic deposition (BD) as the CD, in agreement with simulation and other scaling approaches. For bidisperse ballistic deposition (BBD), the same scaling of RD-BD model is found. The Langevin equation for the model with competing RDSR and BD, with probability p for the latter, is also constructed. It shows linear p dependence of λ, while the quadratic dependence observed in previous simulations is explained by an additional crossover before the asymptotic regime. The results highlight the relevance of scaling of the coefficients of step function expansions in systems with steep surfaces, which is responsible for noninteger exponents in some p-dependent stochastic equations, and the importance of the physical correspondence of aggregation rules and equation coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.