Motivated by structural properties of the Web graph that support efficient data structures for in memory adjacency queries, we study the extent to which a large network can be compressed. Boldi and Vigna (WWW 2004), showed that Web graphs can be compressed down to three bits of storage per edge; we study the compressibility of social networks where again adjacency queries are a fundamental primitive. To this end, we propose simple combinatorial formulations that encapsulate efficient compressibility of graphs. We show that some of the problems are NP-hard yet admit effective heuristics, some of which can exploit properties of social networks such as link reciprocity. Our extensive experiments show that social networks and the Web graph exhibit vastly different compressibility characteristics.
Abstract. Social networks are an interesting class of graphs likely to become of increasing importance in the future, not only theoretically, but also for its probable applications to ad hoc and mobile networking. Rumor spreading is one of the basic mechanisms for information dissemination in networks, its relevance stemming from its simplicity of implementation and effectiveness. In this paper, we study the performance of rumor spreading in the classic preferential attachment model of Bollobás et al. which is considered to be a valuable model for social networks. We prove that, in these networks: (a) The standard PUSH-PULL strategy delivers the message to all nodes within O(log 2 n) rounds with high probability; (b) by themselves, PUSH and PULL require polynomially many rounds. (These results are under the assumption that m, the number of new links added with each new node is at least 2. If m = 1 the graph is disconnected with high probability, so no rumor spreading strategy can work.) Our analysis is based on a careful study of some new properties of preferential attachment graphs which could be of independent interest.
The network inference problem consists of reconstructing the edge set of a network given traces representing the chronology of infection times as epidemics spread through the network. This problem is a paradigmatic representative of prediction tasks in machine learning that require deducing a latent structure from observed patterns of activity in a network, which often require an unrealistically large number of resources (e.g., amount of available data, or computational time). A fundamental question is to understand which properties we can predict with a reasonable degree of accuracy with the available resources, and which we cannot. We define the trace complexity as the number of distinct traces required to achieve high fidelity in reconstructing the topology of the unobserved network or, more generally, some of its properties. We give algorithms that are competitive with, while being simpler and more efficient than, existing network inference approaches. Moreover, we prove that our algorithms are nearly optimal, by proving an informationtheoretic lower bound on the number of traces that an optimal inference algorithm requires for performing this task in the general case. Given these strong lower bounds, we turn our attention to special cases, such as trees and bounded-degree graphs, and to property recovery tasks, such as reconstructing the degree distribution without inferring the network. We show that these problems require a much smaller (and more realistic) number of traces, making them potentially solvable in practice.
User modeling on the Web has rested on the fundamental assumption of Markovian behavior -a user's next action depends only on her current state, and not the history leading up to the current state. This forms the underpinning of PageRank web ranking, as well as a number of techniques for targeting advertising to users. In this work we examine the validity of this assumption, using data from a number of Web settings. Our main result invokes statistical order estimation tests for Markov chains to establish that Web users are not, in fact, Markovian. We study the extent to which the Markovian assumption is invalid, and derive a number of avenues for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.