Understanding the factors that impact the popularity dynamics of social media can drive the design of effective information services, besides providing valuable insights to content generators and online advertisers. Taking YouTube as case study, we analyze how video popularity evolves since upload, extracting popularity trends that characterize groups of videos. We also analyze the referrers that lead users to videos, correlating them, features of the video and early popularity measures with the popularity trend and total observed popularity the video will experience. Our findings provide fundamental knowledge about popularity dynamics and its implications for services such as advertising and search.
Understanding content popularity growth is of great importance to Internet service providers, content creators and online marketers. In this work, we characterize the growth patterns of video popularity on the currently most popular video sharing application, namely YouTube. Using newly provided data by the application, we analyze how the popularity of individual videos evolves since the video's upload time. Moreover, addressing a key aspect that has been mostly overlooked by previous work, we characterize the types of the referrers that most often attracted users to each video, aiming at shedding some light into the mechanisms (e.g., searching or external linking) that often drive users towards a video, and thus contribute to popularity growth. Our analyses are performed separately for three video datasets, namely, videos that appear in the YouTube top lists, videos removed from the system due to copyright violation, and videos selected according to random queries submitted to YouTube's search engine. Our results show that popularity growth patterns depend on the video dataset. In particular, copyright protected videos tend to get most of their views much earlier in their lifetimes, often exhibiting a popularity growth characterized by a viral epidemic-like propagation process. In contrast, videos in the top lists tend to experience sudden significant bursts of popularity. We also show that not only search but also other YouTube internal mechanisms play important roles to attract users to videos in all three datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.