A new explicit methodology for the determination of the force-moment capabilities of nonredundantly and redundantly actuated planar parallel manipulators (PPMs) is presented. This methodology is based on properly adjusting the actuator outputs to their maximum capabilities. As a result, the wrench to be applied or sustained is maximized. For a nonredundantly actuated PPM, one actuator can be maximized, while for a redundantly actuated PPM, one actuator, beyond the one of the nonredundant case, may be maximized for every degree of redundancy added to the mechanism. This methodology is compared to a previous work that required an optimization algorithm. The new method yields more accurate and reliable results and is considerably more efficient. Four studies of force-moment capabilities are considered: maximum force with prescribed moment, maximum applicable force, maximum moment with a prescribed force, and maximum applicable moment. The methodology is used to generate the force-moment capabilities of an existing PPM throughout its workspace.
SUMMARYThis paper is organized in two parts. In Part I, the wrench polytope concept is presented and wrench performance indices are introduced for planar parallel manipulators (PPMs). In Part II, the concept of wrench capabilities is extended to redundant manipulators and the wrench workspace of different PPMs is analyzed. The end-effector of a PPM is subject to the interaction of forces and moments. Wrench capabilities represent the maximum forces and moments that can be applied or sustained by the manipulator. The wrench capabilities of PPMs are determined by a linear mapping of the actuator output capabilities from the joint space to the task space. The analysis is based upon properly adjusting the actuator outputs to their extreme capabilities. The linear mapping results in a wrench polytope. It is shown that for non-redundant PPMs, one actuator output capability constrains the maximum wrench that can be applied (or sustained) with a plane in the wrench space yielding a facet of the polytope. Herein, the determination of wrench performance indices is presented without the expensive task of generating polytopes. Six study cases are presented and performance indices are derived for each study case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.