We consider the problem of coloring a grid using k colors with the restriction that in each row and each column has an specific number of cells of each color. In an already classical result, Ryser obtained a necessary and sufficient condition for the existence of such a coloring when two colors are considered. This characterization yields a linear time algorithm for constructing such a coloring when it exists. Gardner et al. showed that for k ≥ 7 the problem is NP-hard. Afterward Chrobak and Dürr improved this result, by proving that it remains NP-hard for k ≥ 4. We solve the gap by showing that for 3 colors the problem is already NP-hard. Besides we also give some results on tiling tomography problems.
International audienceWe consider the problem of coloring a grid using k colors with the restriction that each row and each column has a specific number of cells of each color. This problem has been known as the $(k-1)$-atom problem in the discrete tomography community. In an already classical result, Ryser obtained a necessary and sufficient condition for the existence of such a coloring when two colors are considered. This characterization yields a linear time algorithm for constructing such a coloring when it exists. Gardner et al. showed that for $k\geqslant 7$ the problem is NP-hard. Afterward Chrobak and Dürr improved this result by proving that it remains NP-hard for $k\geqslant 4$. We close the gap by showing that for $k=3$ colors the problem is already NP-hard. In addition, we give some results on tiling tomography problems
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.