The increasing interest in renewable energy, particularly in wind, has given
rise to the necessity of accurate models for the generation of good synthetic
wind speed data. Markov chains are often used with this purpose but better
models are needed to reproduce the statistical properties of wind speed data.
We downloaded a database, freely available from the web, in which are included
wind speed data taken from L.S.I. -Lastem station (Italy) and sampled every 10
minutes. With the aim of reproducing the statistical properties of this data we
propose the use of three semi-Markov models. We generate synthetic time series
for wind speed by means of Monte Carlo simulations. The time lagged
autocorrelation is then used to compare statistical properties of the proposed
models with those of real data and also with a synthetic time series generated
though a simple Markov chain.Comment: accepted for publication on Physica
In this paper we consider the problem of wind energy production by using a second order semi-Markov chain in state and duration as a model of wind speed. The model used in this paper is based on our previous work where we have showed the ability of second order semi-Markov process in reproducing statistical features of wind speed. Here we briefly present the mathematical model and describe the data and technical characteristics of a commercial wind turbine (Aircon HAWT-10kW). We show how, by using our model, it is possible to compute some of the main dependability measures such as reliability, availability and maintainability functions. We compare, by means of Monte Carlo simulations, the results of the model with real energy production obtained from data available in the Lastem station (Italy) and sampled every 10 minutes. The computation of the dependability measures is a crucial point in the planning and development of a wind farm. Through our model, we show how the values of this quantity can be obtained both analytically and computationally.
The prediction of wind speed is one of the most important aspects when dealing with renewable energy. In this paper we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model, that reproduces accurately the statistical behavior of wind speed, to forecast wind speed one step ahead for different time scales and for very long time horizon maintaining the goodness of prediction. In order to check the main features of the model we show, as indicator of goodness, the root mean square error between real data and predicted ones and we compare our forecasting results with those of a persistence model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.