Abstract. This article uses frequency domain transmissibility functions for detecting and locating damage in operational conditions. In recent articles numerical and experimental examples were presented and the possibility to use the transmissibility concept for damage detection seemed quite promising. In the work discussed so far, it was assumed that the operational conditions were constant, the structure was excited by a single input in a fixed location. Transmissibility functions, defined as a simple ratio between two measured responses, do depend on the amplitudes or locations of the operational forces. The current techniques fail in the case of changing operational conditions. A suitable operational damage detection method should however be able to detect damage in a very early stage even in the case of changing operational conditions. It will be demonstrated in this paper that, by using only a small frequency band around the resonance frequencies of the structure, the existing methods can still be used in a more robust way. The idea is based on the specific property that the transmissibility functions become independent of the loading condition in the system poles. A numerical and experimental validation will be given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.