Abstract. Over the last few years, a few approaches have been proposed aiming to combine genetic and evolutionary computation (GECCO) with inductive logic programming (ILP). The underlying rationale is that evolutionary algorithms, such as genetic algorithms, might mitigate the combinatorial explosions generated by the inductive learning of rich representations, such as those used in first-order logic. Particularly, the binary representation approach presented by Tamaddoni-Nezhad and Muggleton has attracted the attention of both the GECCO and ILP communities in recent years. Unfortunately, a series of systematic and fundamental theoretical errors renders their framework moot. This paper critically examines the fallacious claims in the mentioned approach. It is shown that, far from restoring completeness to the learner progol's search of the subsumption lattice, the binary representation approach is both overwhelmingly unsound and severely incomplete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.