The rebinding kinetics of NO to the heme iron of myoglobin (Mb) is investigated as a function of temperature. Below 200K, the transition state enthalpy barrier associated with the fastest (~10ps) recombination phase is found to be zero, while a slower geminate phase (~200ps) reveals a small enthalpic barrier (~ 3 ± 1 kJ/mol). Both of the kinetic rates slow down slightly in the myoglobin (Mb) samples above 200K, suggesting that a small amount of protein relaxation takes place above the solvent glass transition. When the temperature dependence of the NO recombination in Mb is studied under conditions where the distal pocket is mutated (e.g., V68W), the rebinding kinetics lack the slow phase. This is consistent with a mechanism where the slower (~200ps) kinetic phase involves transitions of the NO ligand into the distal heme pocket from a more distant site (e.g., in or near the Xe4 cavity). Comparison of the temperature dependent NO rebinding kinetics of native Mb with that of the bare heme (PPIX) in glycerol reveals that the fast (enthalpically barrierless) NO rebinding process observed below 200K is independent of the presence or absence of the proximal histidine ligand. In contrast, the slowing of the kinetic rates above 200K in MbNO disappears in the absence of the protein. Generally, the data indicate that, in contrast to CO, the NO ligand binds to the heme iron through a "harpoon" mechanism where the heme iron out-of-plane conformation presents a negligible enthalpic barrier to NO rebinding. These observations strongly support a previous analysis (J. Am. Chem. Soc. 1988, 110, 6656) that primarily attributes the low temperature stretched exponential rebinding of MbCO to a quenched distribution of heme geometries. A simple model is presented for MbNO rebinding that explains a variety of experiments, including the dependence of the kinetic amplitudes on the pump photon energy.
The low-frequency mode activity of metalloporphyrins has been studied for iron porphine-halides (Fe(P)(X), X = Cl, Br) and nitrophorin 4 (NP4) using femtosecond coherence spectroscopy (FCS) in combination with polarized resonance Raman spectroscopy and density functional theory (DFT). It is confirmed that the mode symmetry selection rules for FCS are the same as for Raman scattering and that both Franck-Condon and Jahn-Teller mode activities are observed for Fe(P)(X) under Soret resonance conditions. The DFT-calculated low-frequency (20-400 cm -1 ) modes, and their frequency shifts upon halide substitution, are in good agreement with experimental Raman and coherence data, so that mode assignments can be made. The doming mode is located at ~80 cm -1 for Fe(P)(Cl) and at ~60 cm -1 for Fe(P)(Br). NP4 is also studied with coherence techniques, and the NO-bound species of ferric and ferrous NP4 display a mode at ~30-40 cm -1 that is associated with transient heme doming motion following NO photolysis. The coherence spectra of three ferric derivatives of NP4 with different degrees of heme ruffling distortion are also investigated. We find a mode at ~60 cm -1 whose relative intensity in the coherence spectra depends quadratically on the magnitude of the ruffling distortion. To quantitatively account for this correlation, a new "distortion-induced" Raman enhancement mechanism is presented. This mechanism is unique to low-frequency "soft modes" of the molecular framework that can be distorted by environmental forces. These results demonstrate the potential of FCS as a sensitive probe of dynamic and functionally important nonplanar heme vibrational excitations that are induced by the protein environmental forces or by the chemical reactions in the aqueous phase.
We describe the characterization of degradation products responsible for color change in near UV-visible light-irradiated and heat-stressed monoclonal antibody (mAb) drug product in liquid formulation. The treated samples were characterized using reversed-phase HPLC and size-exclusion HPLC with absorption spectroscopy. Both methods showed color change was due to chromophores formed on the mAb but not associated with the formulation excipients in both light-irradiated and heat-stressed mAb samples. These chromophores were further located by a new peptide mapping methodology with a combination of mass spectrometry and absorption spectroscopy. Mass spectrometry identified the major tryptophan oxidation products as kynurenine (Kyn), N-formylkynurenine (NFK), and hydroxytryptophan (OH-Trp). The absorption spectra showed that each of the tryptophan oxidation products exhibited a distinct absorption band above 280 nm shifted to the longer wavelengths in the order of OH-Trp < NFK < Kyn. The Kyn-containing peptide was detected by absorption at 420 nm. No new absorption bands were observed for either methionine or histidine oxidation products. This confirmed that tryptophan oxidation products, but not methionine and histidine oxidation products, were responsible for the color change. It is worth noting that a new oxidation product with the loss of hydrogen (2 Da mass decrease) for Trp-107 of the heavy chain was identified in the heat-stressed mAb sample. This oxidized tryptophan residue exhibited a distinct absorption band at the maximum absorbance wavelength 335 nm, which is responsible for the color change to yellow. This study showed that the new peptide mapping methodology with a combination of mass spectrometry and absorption spectroscopy is useful to identify tryptophan oxidation products as chromophores responsible for color change in stressed mAb drug product.
Femtosecond coherence spectroscopy is applied to a series of ferric heme protein samples. The low-frequency vibrational spectra that are revealed show dominant oscillations near 40 cm(-1). MbCN is taken as a typical example of a histidine-ligated, six-coordinate, ferric heme and a comprehensive spectroscopic analysis is carried out. The results of this analysis reveal a new heme photoproduct species, absorbing near 418 nm, which is consistent with the photolysis of the His(93) axial ligand. The photoproduct undergoes subsequent rebinding/recovery with a time constant of approximately 4 ps. The photoproduct lineshapes are consistent with a photolysis quantum yield of 75-100%, although the observation of a relatively strong six-coordinate heme coherence near 252 cm(-1) (assigned to nu(9) in the MbCN Raman spectrum) suggests that the 75% lower limit is much more likely. The phase and amplitude excitation profiles of the low-frequency mode at 40 cm(-1) suggest that this mode is strongly coupled to the MbCN photoproduct species and it is assigned to the doming mode of the transient penta-coordinated material. The absolute phase of the 40 cm(-1) mode is found to be pi/2 on the red side of 418 nm and it jumps to 3pi/2 as excitation is tuned to the blue side of 418 nm. The absolute phase of the 40 cm(-1) signal is not explained by the standard theory for resonant impulsive stimulated Raman scattering. New mechanisms that give a dominant momentum impulse to the resonant wavepacket, rather than a coordinate displacement, are discussed. The possibilities of heme iron atom recoil after photolysis, as well as ultrafast nonradiative decay, are explored as potential ways to generate the strong momentum impulse needed to understand the phase properties of the 40 cm(-1) mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.