This study aimed at investigating protein and lipid oxidation during frozen storage of rainbow trout. Rainbow trout fillets were stored for 13 months at -20, -30, or -80 degrees C, and samples were analyzed at regular intervals for lipid and protein oxidation markers. Lipid oxidation was followed by measuring lipid hydroperoxides (PV), as well as secondary oxidation products (volatiles) using dynamic headspace GC-MS. Free fatty acids (FFA) were measured as an estimation of lipolysis. Protein oxidation was followed using the spectrophotometric determination of protein carbonyls and immunoblotting. Significant oxidation was observed in samples stored at -20 degrees C, and at this temperature lipid and protein oxidation seemed to develop simultaneously. FFA, PV, and carbonyls increased significantly for the fish stored at -20 degrees C, whereas the fish stored at -30 and -80 degrees C did not show any increase in oxidation during the entire storage period when these methods were used. In contrast, the more sensitive GC-MS method used for measurement of the volatiles showed that the fish stored at -30 degrees C oxidized more quickly than those stored at -80 degrees C. Detection of protein oxidation using immunoblotting revealed that high molecular weight proteins were oxidized already at t = 0 and that no new protein oxidized during storage irrespective of the storage time and temperature. The results emphasize the need for the development of more sensitive and reliable methods to study protein oxidation in order to gain more explicit knowledge about the significance of protein oxidation for food quality and, especially, to correlate protein oxidation with physical and functional properties of foods.
Multivariate data analysis has been combined with proteomics to enhance the recovery of information from 2-DE of cod muscle proteins during different storage conditions. Proteins were extracted according to 11 different storage conditions and samples were resolved by 2-DE. Data generated by 2-DE was subjected to principal component analysis (PCA) and discriminant partial least squares regression (DPLSR). Applying PCA to 2-DE data revealed the samples to form groups according to frozen storage time, whereas differences due to different storage temperatures or chilled storage in modified atmosphere packing did not lead to distinct changes in protein pattern. Applying DPLSR to the 2-DE data enabled the selection of protein spots critical for differentiation between 3 and 6 months frozen storage with 12 months frozen storage. Some of these protein spots have been identified by MS/MS, revealing myosin light chain 1, 2 and 3, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase A and two alpha-actin fragments, and a nuclease diphosphate kinase B fragment to change in concentration, during frozen storage. Application of proteomics, multivariate data analysis and MS/MS to analyse protein changes in cod muscle proteins during storage has revealed new knowledge on the issue and enables a better understanding of biochemical processes occurring.
Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.