In 2014, the Bering Sea shifted back to warmer ocean temperatures (+2 oC above average), bringing concern for the potential for a new warm stanza and broad biological and ecological cascading effects. In 2015 and 2016 dedicated surveys were executed to study the progression of ocean heating and ecosystem response. We describe ecosystem response to multiple, consecutive years of ocean warming and offer perspective on the broader impacts. Ecosystem changes observed include reduced spring phytoplankton biomass over the southeast Bering Sea shelf relative to the north, lower abundances of large-bodied crustacean zooplankton taxa, and degraded feeding and body condition of age-0 walleye pollock. This suggests poor ecosystem conditions for young pollock production and the risk of significant decline in the number of pollock available to the pollock fishery in 2–3 years. However, we also noted that high quality prey, large copepods and euphausiids, and lower temperatures in the north may have provided a refuge from poor conditions over the southern shelf, potentially buffering the impact of a sequential-year warm stanza on the Bering Sea pollock population. We offer the hypothesis that juvenile (age-0, age-1) pollock may buffer deleterious warm stanza effects by either utilizing high productivity waters associated with the strong, northerly Cold Pool, as a refuge from the warm, low production areas of the southern shelf, or by exploiting alternative prey over the southern shelf. We show that in 2015, the ocean waters influenced by spring sea ice (the Cold Pool) supported robust phytoplankton biomass (spring) comprised of centric diatom chains, a crustacean copepod community comprised of large-bodied taxa (spring, summer), and a large aggregation of midwater fishes, potentially young pollock. In this manner, the Cold Pool may have acted as a trophic refuge in that year. The few age-0 pollock occurring over the southeast shelf consumed high numbers of euphausiids which may have provided a high quality alternate prey. In 2016 a retracted Cold Pool precluded significant refuging in the north, though pollock foraging on available euphausiids over the southern shelf may have mitigated the effect of warm waters and reduced large availability of large copepods. This work presents the hypothesis that, in the short term, juvenile pollock can mitigate the drastic impacts of sustained warming. This short-term buffering, combined with recent observations (2017) of renewed sea ice presence over southeast Bering Sea shelf and a potential return to average or at least cooler ecosystem conditions, suggests that recent warm year stanza (2014–2016) effects to the pollock population and fishery may be mitigated.
First winter survival of juvenile cold temperate fish can be an important recruitment driver. Winter survival may be influenced by size and energy reserves, with larger, fatter individuals less vulnerable to predation and starvation. However, limited information regarding relationships among size, growth, and energy reserves often hampers understanding recruitment processes for economically and ecologically important marine species. To better understand winter mortality risks, we examined growth and lipid storage patterns in young-of-the-year (YOY) Pacific herring Clupea pallasii in Prince William Sound, Alaska, USA, near the onset (November) and end (March) of 7 winters during 2009−2016 that occurred before and during the North Pacific marine heat wave. Herring length in November determined energy allocation, with a shift from proteinbased growth to lipid storage occurring at ~76 mm fork length. We suggest that size-selective predation pressure causes small herring below this size to favor growth over storing fat. Low March lipid stores apparently compelled herring to avoid starvation by foraging, behavior that could increase predation risk especially for small herring. Larger herring ate more high-quality euphausiid prey than did small herring during November, reinforcing the advantages of large size. Herring lipid stores were highest in the coldest study year, rather than the year with the best diets, presumably due to low temperature slowing metabolic rates. Our findings suggest overwinter survival models could be improved with unbiased estimates of late autumn YOY herring size and energy distributions, seasonal temperature measurements, estimates of food consumption, and knowledge of local predator densities.
Measuring fish population responses to climate change requires timely ecological information, warranting innovative approaches to data collection in fisheries research and management. Fourier transform near-infrared (FT-NIR) spectroscopy is a promising tool to efficiently and cost-effectively obtain multiple types of fisheries data including fish physiological health and energetics that can provide indicators of stock status and environmental change. We tested the applicability of FT-NIR spectroscopy to determine fish physiological state and condition by developing calibration models for morphometric indices of body condition [Fulton’s K and hepatosomatic index (HSI)], biochemical measurements of tissue composition (lipid content and energy density), and a nucleic acid-based index of recent growth (RNA:DNA) of juvenile Pacific cod (Gadus macrocephalus). Calibration models had the best predictive ability for lipid content followed by HSI and energy density, whereas spectral data had weak relationships with Fulton’s K and RNA:DNA. For lipid content, energy density, and HSI, informative spectral regions were primarily associated with carbon-hydrogen bonds in lipid molecules. Additionally, FT-NIR spectroscopy calibration models better predicted lipid content than morphometric measurements that are often used as proxies for measuring energy reserves, indicating that FT-NIR spectroscopy might serve as a more informative index of body condition and energy stores than other rapid methods. Efficient sample analysis by FT-NIR spectroscopy can supplement traditional metrics of body condition and be especially useful for ensuring the availability of monitoring data in support of fisheries research and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.