SummaryDual-specificity protein phosphatases (DSPs) are important regulators of a wide variety of protein kinase signaling cascades in animals, fungi and plants. We previously identified a cluster of putative DSPs in Arabidopsis (including At3g52180 and At3g01510) in which the phosphatase domain is related to that of laforin, the human protein mutated in Lafora epilepsy. In animal and fungal systems, the laforin DSP and the beta-regulatory subunits of AMP-regulated protein kinase (AMPK) and Snf-1 have all been demonstrated to bind to glycogen by a glycogen-binding domain (GBD). We present a bioinformatic analysis which shows that these DSPs from Arabidopsis, together with other related plant DSPs, share with the above animal and fungal proteins a widespread and ancient carbohydrate-binding domain. We demonstrate that DSP At3g52180 binds to purified starch through its predicted carbohydrate-binding region, and that mutation of key conserved residues reduces this binding. Consistent with its ability to bind exogenous starch, DSP At3g52180 was found associated with starch purified from Arabidopsis plants and suspension cells. Immunolocalization experiments revealed a co-localization with chlorophyll, placing DSP At3g52180 in the chloroplast. Gene-expression data from different stages of the light-dark cycle and across a wide variety of tissues show a strong correlation between the pattern displayed by transcripts of the At3g52180 locus and that of genes encoding key starch degradative enzymes. Taken together, these data suggest the hypothesis that plant DSPs could be part of a protein assemblage at the starch granule, where they would be ideally situated to regulate starch metabolism through reversible phosphorylation events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.