La mamografía es el método más eficaz para la detección del cáncer de mama; sin embargo, el bajo valor predictivo, puede conducir a biopsias innecesarias. Esta investigación tiene como objetivo desarrollar un modelo predictivo para la discriminación de masas mamográficas mediante KNN y el atributo BIRADS con un nivel aceptable de exactitud, precisión, sensibilidad y puntaje-F1. Para ello, realizamos las siguientes fases: limpieza de los datos, entrenamiento del algoritmo KNN y selección del modelo. El resultado obtenido fue un modelo de discriminación de masas mamográficas con una exactitud del 85% así como niveles aceptables de precisión, sensibilidad y puntaje F1. Se concluye que es posible utilizar este modelo como un elemento de juicio para el diagnóstico de cáncer de mama; asimismo, a través de la tasa de error es posible encontrar modelos óptimos en KNN
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.