Photoinduced proton transfer (PT) from cations 6-hydroxyquinolinium (6HQc) and 6-hydroxy-1-methylquinolinium (6MQc) to water and alcohols, and solvation of the zwitterionic conjugate base 1-methylquinolinium-6-olate (6MQz) were studied with stationary and transient absorption spectroscopy and by quantum chemical calculations. Transient emission spectra from 6MQz in acetonitrile and protic solvents shift dynamically to the red without changing their shape and intensity. The shift matches the solvation correlation function C(t) either measured with known solvatochromic probes coumarin 343 and coumarin 153 or derived from infrared/dielectric-loss data on neat solvents. This indicates that 6MQz monitors the solvation dynamics and that no intramolecular electron transfer occurs on a subpicosecond or longer time scale. The PT dynamics S(t) from 6HQc and 6MQc closely follows C(t), being initially 2-3 times slower. This allows for the conclusion that PT is controlled by solvation, with a barrier of 2 kJ/mol. In water, a pre-condition of this ultrafast reaction seems to be hydrogen-bonding between the negatively charged oxygen and two water molecules, resulting in a complex 6HQc:H2O:H2O. The complex is stable due to a high (47 kJ/mol) bonding energy between 6HQc and a water molecule. In acetonitrile, the reaction equilibrium is strongly shifted to the cation. There an intermediate PT state was detected, which may be ascribed to the cationic form 6HQc:H2O due to residual water impurities. In water-acetonitrile mixtures, the ultrafast solvent-controlled PT is followed by a diffusion-controlled reaction; the measured rate kD approximately 1010 s-1 M-1 is characteristic for simple bimolecular diffusion. The dependence of the short-time PT signal on water concentration can be fitted with a Poisson distribution of water molecules around the cation. Altogether, the short-time and long-time behaviors provide strong evidence that diffusion of only one water molecule is sufficient to detach the proton. Subsequent solvent stabilization of the products completes the PT reaction.
Excited-state proton transfer in aqueous and ethanolic solutions of 2-(2′-hydroxyphenyl)benzimidazole (HBI) was investigated by means of UV-vis absorption and fluorescence spectroscopy. The behavior of HBI in water differed from its behavior in ethanol, and in both solvents fluorescence behavior depended on acidity. In both neutral water and neutral ethanol, ground-state HBI exhibits conformational equilibrium between a cis-enol form with an intramolecular hydrogen bond and a trans-enol form that is hydrogen-bonded to the solvent; the ground-state keto tautomer is also present in water but was not detected in ethanol. The excited cis-enol conformer always undergoes ultrafast intramolecular proton transfer to afford the excited keto tautomer. The excited trans-enol form fluoresces in both solvents, and in water it also loses its hydroxyl proton to the solvent, leaving the excited anion. In both acidic aqueous solution and acidic ethanol, excited protonated HBI loses its hydroxyl proton to give the excited keto form, but this process is faster in water than in ethanol, in which fluorescence by the cation is also observed.
The excited-state acid-base behavior of 2-(4'-pyridyl)benzimidazole in aqueous solution has been studied over a wide range of acidity by UV absorption and fluorescence spectroscopy. The species detected in the lowest electronically excited singlet state turned out to be identical to those of the ground state: the anion A, the neutral molecule N, the monocation C protonated at the benzimidazole N3, the monocation T protonated at the pyridyl nitrogen, and the dication D. Nevertheless, the strong increase in the basicity of the pyridyl nitrogen atom in the excited state induces different excited-state proton-transfer processes. The dual fluorescence of 4PBI at neutral pH is explained by the protonation of N* to give T*. On the basis of the steady-state data together with the fluorescence decay measurements at several acidities, a mechanism is proposed to explain the acid-base behavior of 4PBI in the first excited singlet state.
The ground- and excited-state behaviour of the isomeric species 2-(2'-methoxyphenyl)imidazo[4,5-b]pyridine (1-OMe) and 2-(2'-hydroxyphenyl)-4-methylimidazo[4,5-b]pyridine (1-NMe) in neutral and acid media has been studied by UV-vis absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy. The new dye 1-NMe is non-fluorescent in neutral media except in trifluoroethanol, where it shows a very weak fluorescence. 1-NMe also exhibits highly solvent-dependent fluorescence intensity in acidic media. We propose that the neutral species experiences a fast excited-state intramolecular proton transfer (ESIPT), relaxing afterwards by intramolecular twisting associated with internal charge transfer (TICT) and subsequent very fast internal conversion of the proton-transferred TICT structure. The behaviour of 1-NMe in acidic media is explained by the existence of a ground-state tautomeric equilibrium between species with intramolecular hydrogen bonds N-HOH and NHO. The first type of tautomers dissociates at the hydroxyl group in water and ethanol, but fluoresces in acetonitrile and trifluoroethanol due to the inability of these solvents to accept the proton. The second type of tautomers is non-emissive due to fast radiationless deactivation through an ESIPT-TICT process. The fluorescence of 1-OMe was investigated in neutral and acidic media, demonstrating the photobasic character of the pyridine nitrogen. A ground-state equilibrium between pyridinium and imidazolium cations was found for this species, showing overlapping absorption and fluorescence spectra. We devised a method to resolve the spectra by applying principal component global analysis to a series of excitation spectra taken at different emission wavelengths, which allowed estimation of the equilibrium constant between the cations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.