Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA) is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health.
BackgroundUropathogenic Escherichia coli (UPEC) are one of the main bacteria causing urinary tract infections (UTIs). The rates of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically in recent years and could difficult the treatment.MethodsThe aim of the study was to determine multidrug-resistant bacteria, antibiotic resistance profile, virulence traits, and genetic background of 110 E. coli isolated from community (79 isolates) and hospital-acquired (31 isolates) urinary tract infections. The plasmid-mediated quinolone resistance genes presence was also investigated. A subset of 18 isolates with a quinolone-resistance phenotype was examined for common virulence genes encoded in diarrheagenic and extra-intestinal pathogenic E. coli by a specific E. coli microarray.ResultsFemale children were the group most affected by UTIs, which were mainly community-acquired. Resistance to trimethoprim–sulfamethoxazole, ampicillin, and ampicillin–sulbactam was most prevalent. A frequent occurrence of resistance toward ciprofloxacin (47.3%), levofloxacin (43.6%) and cephalosporins (27.6%) was observed. In addition, 63% of the strains were multidrug-resistant (MDR). Almost all the fluoroquinolone (FQ)-resistant strains showed MDR-phenotype. Isolates from male patients were associated to FQ-resistant and MDR-phenotype. Moreover, hospital-acquired infections were correlated to third generation cephalosporin and nitrofurantoin resistance and the presence of kpsMTII gene. Overall, fimH (71.8%) and fyuA (68.2%), had the highest prevalence as virulence genes among isolates. However, the profile of virulence genes displayed a great diversity, which included the presence of genes related to diarrheagenic E. coli. Out of 110 isolates, 25 isolates (22.7%) were positive to qnrA, 23 (20.9%) to qnrB, 7 (6.4%) to qnrS1, 7 (6.4%) to aac(6′)lb-cr, 5 (4.5%) to qnrD, and 1 (0.9%) to qnrC genes. A total of 12.7% of the isolates harbored blaCTX-M genes, with blaCTX-M-15 being the most prevalent.ConclusionsUrinary tract infection due to E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics. Continuous surveillance of multidrug resistant organisms and patterns of drug resistance are needed in order to prevent treatment failure and reduce selective pressure. These findings may help choosing more suitable treatments of UTI patients in this region of Mexico.
Respiratory pathogens are the main health problem in the swine industry worldwide. These pathogens are transmitted by direct contact between animals or by aerosols and however are not well known yet, if the environment works as its reservoir, inoculum and/or dispersion medium. The objective of this study was to determine the presence of respiratory pathogens in environmental samples from swine farms in Aguascalientes, Mexico, through of PCR and RT-PCR techniques. The bacteria Actinobacillus pleuropneumoniae and Pasteurella multocida were found viable in samples from water, food, soil and air. Streptococcus suis was found in a viable state in water samples. Haemophilus parasuis, Porcine Reproductive and Respiratory Syndrome virus and Swine Influenza virus (H1N1 and H3N2) were detected in drinking water samples. Mycoplasma hyopneumoniae and Porcine Circovirus type 2 (PCV2) were not detected in environmental samples. These results suggest that the environment of the farms acts as a reservoir, inoculum and/or vehicle of dispersion for these pathogens except for M. hyopneumoniae and PCV2.
Actinobacillus pleuropneumoniae, the etiological agent of porcine pleuropneumonia, represents one of the most important health problems in the swine industry worldwide and it is included in the porcine respiratory disease complex. One of the bacterial survival strategies is biofilm formation, which are bacterial communities embedded in an extracellular matrix that could be attached to a living or an inert surface. Until recently, A. pleuropneumoniae was considered to be an obligate pathogen. However, recent studies have shown that A. pleuropneumoniae is present in farm drinking water. In this study, the drinking water microbial communities of Aguascalientes (Mexico) swine farms were analyzed, where the most frequent isolated bacterium was Escherichia coli. Biofilm formation was tested in vitro; producing E. coli biofilms under optimal growth conditions; subsequently, A. pleuropneumoniae serotype 1 (strains 4074 and 719) was incorporated to these biofilms. Interaction between both bacteria was evidenced, producing an increase in biofilm formation. Extracellular matrix composition of two-species biofilms was also characterized using fluorescent markers and enzyme treatments. In conclusion, results confirm that A. pleuropneumoniae is capable of integrates into biofilms formed by environmental bacteria, indicative of a possible survival strategy in the environment and a mechanism for disease dispersion.
Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, an important respiratory disease for the pig industry. A. pleuropneumoniae has traditionally been considered an obligate pig pathogen. However, its presence in the environment is starting to be known. Here, we report the A. pleuropneumoniae surviving in biofilms in samples of drinking water of swine farms from Mexico. Fourteen farms were studied. Twenty drinking water samples were positive to A. pleuropneumoniae distributed on three different farms. The bacteria in the drinking water samples showed the ability to form biofilms in vitro. Likewise, A. pleuropneumoniae biofilm formation in situ was observed on farm drinkers, where the biofilm formation was in the presence of other bacteria such as Escherichia coli, Stenotrophomonas maltophilia, and Acinetobacter schindleri. Our data suggest that A. pleuropneumoniae can inhabit aquatic environments using multi-species biofilms as a strategy to survive outside of their host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.