The use of concrete for construction had become very common in developing countries. But concrete is not friendly environment because of it consumes huge quantities of natural materials and production of the cement, which is a major contributor to greenhouse gas emissions and global warming. The aim of this study is to investigate the Sustainable Green Concrete (SGC) which containing biomass aggregate; fly ash and Superplasticizer. Biomass aggregate and fly ash are waste industry products which are environmentally friendly. The study was carried out to identify the chemical properties of biomass aggregate, and to determine the chemical properties and optimum mix design of the Sustainable Green Concrete (SGC). A total of 90 cube samples were casted and compressive strength were tested at the age of 7, 14 and 28 days. The overall results showed that the workability and compressive strength were decreased with the increase of the replacement of natural aggregate with biomass aggregate. Besides that, the workability and compressive strength was increased with the incorporation with the replacement cement by fly ash. The SGC gained highest compressive strength for the concrete mixes of 39.3 N/mm2 with the optimum percentage used of SGC in producing concrete not exceeding 30% biomass aggregate and 6% of fly ash as a partial replacement with natural aggregate and cement respectively. The results obtained and observation made in this study suggested that biomass aggregate and fly ash are successfully used as partial replacement in producing SGC and can perform better strength development.
This research investigates the influence of calcination temperatures of palm oil fuel ash (POFA) on the properties of the raw precursor and its hardened binder after alkali activation.The raw POFA obtained from palm oil mill is treated at 500°C, 600°C, and 700°C for approximately 6 h. The treated POFA (TPOFA) is characterized for particle size distributions and chemical compositions by X-ray fluorescence (XRF); microstructural properties by observing through scanning electron microscopy (SEM); and Fourier-transform infrared spectroscopy (FTIR) for molecular functional groups. Pastes of alkali-activated POFA (AAPOFA) are synthesized with 12 M sodium hydroxide (NaOH) as alkali activator where the liquid to binder ratio is 0.4. Calcination temperatures are observed to have some influences on the physical properties (such as color, texture, particle size and fineness) and chemical properties (such as composition and reactivity) of the raw precursor. These properties control microstructural evolution of hardened pastes, compressive strength and capillary sorptivity properties of the hardened pastes. Overall results show 500°C is the optimum calcination temperature for POFA that contributes to comparable strength and lowest permeability of AAPOFA binders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.