Objectives The study sought to assess the clinical performance of a machine learning model aiming to identify unusual medication orders. Materials and Methods This prospective study was conducted at CHU Sainte-Justine, Canada, from April to August 2020. An unsupervised machine learning model based on GANomaly and 2 baselines were trained to learn medication order patterns from 10 years of data. Clinical pharmacists dichotomously (typical or atypical) labeled orders and pharmacological profiles (patients’ medication lists). Confusion matrices, areas under the precision-recall curve (AUPRs), and F1 scores were calculated. Results A total of 12 471 medication orders and 1356 profiles were labeled by 25 pharmacists. Medication order predictions showed a precision of 35%, recall (sensitivity) of 26%, and specificity of 97% as compared with pharmacist labels, with an AUPR of 0.25 and an F1 score of 0.30. Profile predictions showed a precision of 49%, recall of 75%, and specificity of 82%, with an AUPR of 0.60, and an F1 score of 0.59. The model performed better than the baselines. According to the pharmacists, the model was a useful screening tool, and 9 of 15 participants preferred predictions by medication, rather than by profile. Discussion Predictions for profiles had higher F1 scores and recall compared with medication order predictions. Although the performance was much better for profile predictions, pharmacists generally preferred medication order predictions. Conclusions Based on the AUPR, this model showed better performance for the identification of atypical pharmacological profiles than for medication orders. Pharmacists considered the model a useful screening tool. Improving these predictions should be prioritized in future research to maximize clinical impact.
Rab 25 is a small GTPase belonging to the RAS (rat sarcoma) superfamily. It is expressed in epithelial cells only and serves as a regulator of various intracellular signaling pathways. As a key player in in cell regulation, Rab 25 has been shown by research to function mainly as an oncogene in various cancers including breast cancer and ovarian cancer. However, Rab 25 has also been reported to be a tumor suppressor in cancer types such as colorectal cancer. A lot of research has been done about Rab 25 in recent years. This review is an overview of Rab 25, focusing on their role in human diseases such as cancer.
The objective of this work was to assess the clinical performance of an unsupervised machine learning model aimed at identifying unusual medication orders and pharmacological profiles. We conducted a prospective study between April 2020 and August 2020 where 25 clinical pharmacists dichotomously (typical or atypical) rated 12,471 medication orders and 1,356 pharmacological profiles. Based on AUPR, performance was poor for orders, but satisfactory for profiles. Pharmacists considered the model a useful screening tool.
No abstract
The design of catalyst products to reduce harmful emissions is currently an intensive process of expert-driven discovery, taking several years to develop a product. Machine learning can accelerate this timescale, leveraging historic experimental data from related products to guide which new formulations and experiments will enable a project to most directly reach its targets. We used machine learning to accurately model 16 key performance targets for catalyst products, enabling detailed understanding of the factors governing catalyst performance and realistic suggestions of future experiments to rapidly develop more effective products. The proposed formulations are currently undergoing experimental validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.