Robust generation of IgG bispecific antibodies has been a long-standing challenge. Existing methods require extensive engineering of each individual antibody, discovery of common light chains, or complex and laborious biochemical processing. Here we combine computational and rational design approaches with experimental structural validation to generate antibody heavy and light chains with orthogonal Fab interfaces. Parental monoclonal antibodies incorporating these interfaces, when simultaneously co-expressed, assemble into bispecific IgG with improved heavy chain-light chain pairing. Bispecific IgGs generated with this approach exhibit pharmacokinetic and other desirable properties of native IgG, but bind target antigens monovalently. As such, these bispecific reagents may be useful in many biotechnological applications.
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme that downregulates the insulin receptor. Inhibition of PTP1B is expected to improve insulin action, and the design of small molecule PTP1B inhibitors to treat type II diabetes has received considerable attention. In this work, NMR-based screening identified a nonselective competitive inhibitor of PTP1B. A second site ligand was also identified by NMR-based screening and then linked to the catalytic site ligand by rational design. X-ray data confirmed that the inhibitor bound with the catalytic site in the native, "open" conformation. The final compound displayed excellent potency and good selectivity over many other phosphatases. The modular approach to drug design described in this work should be applicable for the design of potent and selective inhibitors of other therapeutically relevant protein tyrosine phosphatases.
Single-chain Fvs (scFvs) are commonly used building blocks for creating engineered diagnostic and therapeutic antibody molecules. Bispecific antibodies (BsAbs) hold particular interest due to their ability to simultaneously bind and engage two distinct targets. We describe a technology for producing stable, scalable IgG-like bispecific and multivalent antibodies based on methods for rapidly engineering thermally stable scFvs. Focused libraries of mutant scFvs were designed using a combination of sequence-based statistical analyses and structure-, and knowledge-based methods. Libraries encoding these designs were expressed in E. coli and culture supernatants-containing soluble scFvs screened in a high-throughput assay incorporating a thermal challenge prior to an antigen-binding assay. Thermally stable scFvs were identified that retain full antigen-binding affinity. Single mutations were found that increased the measured T(m) of either the V(H) or V(L) domain by as much as 14 degrees C relative to the wild-type scFv. Combinations of mutations further increased the T(m) by as much as an additional 12 degrees C. Introduction of a stability-engineered scFv as part of an IgG-like BsAb enabled scalable production and purification of BsAb with favorable biophysical properties.
A challenge in the structure-based design of specificity is modeling the negative states, i.e. the complexes that you do not want to form. This is a difficult problem because mutations predicted to destabilize the negative state might be accommodated by small conformational rearrangements. To overcome this challenge, we employ an iterative strategy that cycles between sequence design and protein docking in order to build up an ensemble of alternative negative state conformations for use in specificity prediction. We have applied our technique to the design of heterodimeric CH3 interfaces in the Fc region of antibodies. Combining computationally- and rationally-designed mutations produced unique designs with heterodimer purities greater than 90%. Asymmetric Fc crystallization was able to resolve the interface mutations; the heterodimer structures confirmed that the interfaces formed as designed. With these CH3 mutations, and those made at the heavy-/light-chain interface, we demonstrate one-step synthesis of four fully IgG bispecific antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.