The world's tropical reef ecosystems, and the people who depend on them, are increasingly 60 impacted by climate change [1][2][3][4][5][6][7] Reef, as well as the potential influence of water quality and fishing pressure on the severity of 71 bleaching. 72The geographic footprints of mass bleaching of corals on the Great Barrier Reef have varied 73 strikingly during three major events in 1998 , 2002 and 2016). In 1998, bleaching was 74 primarily coastal and most severe in the central and southern regions. In 2002, bleaching was 75 more widespread, and affected offshore reefs in the central region that had escaped in 1998 8 . 76In 2016, bleaching was even more extensive and much more severe, especially in the 77 northern, and to a lesser extent the central regions, where many coastal, mid-shelf and 78 offshore reefs were affected (Fig. 1a, b). In 2016, the proportion of reefs experiencing 79 extreme bleaching (>60% of corals bleached) was over four times higher compared to 1998 80 or 2002 (Fig. 1f) The severity and distinctive geographic footprints of bleaching in each of the three 88 years can be explained by differences in the magnitude and spatial distribution of sea-surface 89 temperature anomalies (Fig. 1a, b 102The geographic pattern of bleaching also demonstrates how marine heatwaves can be (Fig. 2a) (Fig. 1g). largely escaped bleaching in the two earlier events (Fig. 1a). Thirty-five percent of the reefs (Fig. 1b, e). We conclude that the overlap of disparate geographic bleaching at the scale of both individual reefs and the entire Great Barrier Reef (Fig. 1a, b). 134We found a similar strong relationship between the amount of bleaching measured 135 underwater, and the satellite-based estimates of heat exposure on individual reefs (Fig. 3). 136Low levels of bleaching was observed at some locations when DHW values were only 2-3 137 o C-weeks. Typically, 30-40% of corals bleached on reefs exposed to 4 o C-weeks, whereas an 138 average of 70-90% of corals bleached on reefs that experience 8 o C-weeks or more (Fig. 3). 139Resistance and adaptation to bleaching 140 Once we account for the amount of heat stress experienced on each reef, adding 141 chlorophyll-a, a proxy for water quality, to our statistical model yielded no support for the 142 hypothesis that good water quality confers resistance to bleaching 13 . Rather, the estimated 143 effect of chlorophyll-a was to significantly reduce the DHW threshold for bleaching 144 (Extended Data Table 1). However, despite the statistical significance, the effect in real terms 145 beyond heat stress alone is very small (Extended Data Fig. 1). Similarly, we found no effect 146 of the level of protection (in fished or protected zones) on bleaching (P > 0.1: Extended Data 147 Table 1). These results are consistent with the broad-scale pattern of severe bleaching in the 148 northern Great Barrier Reef, which affected hundreds of reefs across inshore-offshore 149 gradients in water quality, and regardless of their zoning (protection) status (Fig. 1a, b). 150Simila...
Global warming is rapidly emerging as a universal threat to ecological integrity and function, highlighting the urgent need for a better understanding of the impact of heat exposure on the resilience of ecosystems and the people who depend on them . Here we show that in the aftermath of the record-breaking marine heatwave on the Great Barrier Reef in 2016 , corals began to die immediately on reefs where the accumulated heat exposure exceeded a critical threshold of degree heating weeks, which was 3-4 °C-weeks. After eight months, an exposure of 6 °C-weeks or more drove an unprecedented, regional-scale shift in the composition of coral assemblages, reflecting markedly divergent responses to heat stress by different taxa. Fast-growing staghorn and tabular corals suffered a catastrophic die-off, transforming the three-dimensionality and ecological functioning of 29% of the 3,863 reefs comprising the world's largest coral reef system. Our study bridges the gap between the theory and practice of assessing the risk of ecosystem collapse, under the emerging framework for the International Union for Conservation of Nature (IUCN) Red List of Ecosystems , by rigorously defining both the initial and collapsed states, identifying the major driver of change, and establishing quantitative collapse thresholds. The increasing prevalence of post-bleaching mass mortality of corals represents a radical shift in the disturbance regimes of tropical reefs, both adding to and far exceeding the influence of recurrent cyclones and other local pulse events, presenting a fundamental challenge to the long-term future of these iconic ecosystems.
Despite the ubiquity of ferrihydrite in natural sediments and its importance as an industrial sorbent, the nanocrystallinity of this iron oxyhydroxide has hampered accurate structure determination by traditional methods that rely on long-range order. We uncovered the atomic arrangement by real-space modeling of the pair distribution function (PDF) derived from direct Fourier transformation of the total x-ray scattering. The PDF for ferrihydrite synthesized with the use of different routes is consistent with a single phase (hexagonal space group P6(3)mc; a = approximately 5.95 angstroms, c = approximately 9.06 angstroms). In its ideal form, this structure contains 20% tetrahedrally and 80% octahedrally coordinated iron and has a basic structural motif closely related to the Baker-Figgis delta-Keggin cluster. Real-space fitting indicates structural relaxation with decreasing particle size and also suggests that second-order effects such as internal strain, stacking faults, and particle shape contribute to the PDFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.