The world's tropical reef ecosystems, and the people who depend on them, are increasingly 60 impacted by climate change [1][2][3][4][5][6][7] Reef, as well as the potential influence of water quality and fishing pressure on the severity of 71 bleaching. 72The geographic footprints of mass bleaching of corals on the Great Barrier Reef have varied 73 strikingly during three major events in 1998 , 2002 and 2016). In 1998, bleaching was 74 primarily coastal and most severe in the central and southern regions. In 2002, bleaching was 75 more widespread, and affected offshore reefs in the central region that had escaped in 1998 8 . 76In 2016, bleaching was even more extensive and much more severe, especially in the 77 northern, and to a lesser extent the central regions, where many coastal, mid-shelf and 78 offshore reefs were affected (Fig. 1a, b). In 2016, the proportion of reefs experiencing 79 extreme bleaching (>60% of corals bleached) was over four times higher compared to 1998 80 or 2002 (Fig. 1f) The severity and distinctive geographic footprints of bleaching in each of the three 88 years can be explained by differences in the magnitude and spatial distribution of sea-surface 89 temperature anomalies (Fig. 1a, b 102The geographic pattern of bleaching also demonstrates how marine heatwaves can be (Fig. 2a) (Fig. 1g). largely escaped bleaching in the two earlier events (Fig. 1a). Thirty-five percent of the reefs (Fig. 1b, e). We conclude that the overlap of disparate geographic bleaching at the scale of both individual reefs and the entire Great Barrier Reef (Fig. 1a, b). 134We found a similar strong relationship between the amount of bleaching measured 135 underwater, and the satellite-based estimates of heat exposure on individual reefs (Fig. 3). 136Low levels of bleaching was observed at some locations when DHW values were only 2-3 137 o C-weeks. Typically, 30-40% of corals bleached on reefs exposed to 4 o C-weeks, whereas an 138 average of 70-90% of corals bleached on reefs that experience 8 o C-weeks or more (Fig. 3). 139Resistance and adaptation to bleaching 140 Once we account for the amount of heat stress experienced on each reef, adding 141 chlorophyll-a, a proxy for water quality, to our statistical model yielded no support for the 142 hypothesis that good water quality confers resistance to bleaching 13 . Rather, the estimated 143 effect of chlorophyll-a was to significantly reduce the DHW threshold for bleaching 144 (Extended Data Table 1). However, despite the statistical significance, the effect in real terms 145 beyond heat stress alone is very small (Extended Data Fig. 1). Similarly, we found no effect 146 of the level of protection (in fished or protected zones) on bleaching (P > 0.1: Extended Data 147 Table 1). These results are consistent with the broad-scale pattern of severe bleaching in the 148 northern Great Barrier Reef, which affected hundreds of reefs across inshore-offshore 149 gradients in water quality, and regardless of their zoning (protection) status (Fig. 1a, b). 150Simila...
High sea surface temperatures caused global coral bleaching during [2015][2016]. During this thermal stress event, we quantified within-and among-species variability in bleaching severity for critical habitat-forming Acropora corals. The objective of this study was to understand the drivers of spatial and species-specific variation in the bleaching susceptibility of these corals, and to evaluate whether bleaching susceptibility under extreme thermal stress was consistent with that observed during less severe bleaching events. We surveyed and mapped Acropora corals at 10 sites (N = 596) around the Lizard Island group on the northern Great Barrier Reef. For each colony, bleaching severity was quantified using a new image analysis technique, and we assessed whether small-scale environmental variables (depth, microhabitat, competition intensity) and species traits (colony morphology, colony size, known symbiont clade association) explained variation in bleaching. Results showed that during severe thermal stress, bleaching of branching corals was linked to microhabitat features, and was more severe at reef edge compared with lagoonal sites. Bleaching severity worsened over a very short time-frame (∼1 week), but did not differ systematically with water depth, competition intensity, or colony size. At our study location, within-and among-species variation in bleaching severity was relatively low compared to the level of variation reported in the literature. More broadly, our results indicate that variability in bleaching susceptibility during extreme thermal stress is not consistent with that observed during previous bleaching events that have ranged in severity among globally dispersed sites, with fewer species escaping bleaching during severe thermal stress. In addition, shaded microhabitats can provide a refuge from bleaching which provides further evidence of the importance of topographic complexity for maintaining the biodiversity and ecosystem functioning of coral reefs.
Understanding species differences in demographic strategies is a fundamental goal of ecology. In scleractinian corals, colony morphology is tightly linked with many demographic traits, such as size-specific growth and morality. Here we test how well morphology predicts the colony size-fecundity relationship in eight species of broadcast-spawning corals. Variation in colony fecundity is greater among morphologies than between species with a similar morphology, demonstrating that colony morphology can be used as a quantitative proxy for demographic strategies. Additionally, we examine the relationship between size-specific colony fecundity and mechanical vulnerability (i.e., vulnerability to colony dislodgment). Interestingly, the relationship between size-specific fecundity and mechanical vulnerability varied among morphologies. For tabular species, the most fecund colonies are the most mechanically vulnerable, while the opposite is true for massive species. For corymbose and digitate colonies, mechanical vulnerability remains relatively constant as fecundity increases. These results reveal strong differences in the demographic tradeoffs among species of different morphologies. Using colony morphology as a quantitative proxy for demographic strategies can help predict coral community dynamics and responses to anthropogenic change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.